間違いしかありません.コメントにてご指摘いただければ幸いです(気が付いた点を特に断りなく頻繁に書き直していますのでご注意ください).

バーゼル問題(ディガンマ凾数の相反公式から)

平方数の逆数全ての和はいくつかという問題(バーゼル問題)

k=11k2=π6

ディガンマ凾数の相反公式

ψ(1z)ψ(z)=πcot(πz)
その微分 zπcot(πz)=πzcot(πz)=π{πsin2(πz)}wcot(aw)=asin2(aw)=π2sin2(πz)=f(z)

f(z)z=13の値

π2sin2(π13)=π2(32)2sin(π3)=32=π234=4π23

ディガンマ凾数の相反公式の積分表示

ψ(1z)ψ(z)=01u(z)1u(1z)11uduψ(y)ψ(x)=01ux1uy11udu=01uz1uz1udu=0(ex)z1(ex)z1ex(ex)dxu=ex,dudx=exu=ex,u:01,x:0=0ex{ex(z1)ex(z)}1exdx=0exexz+xexexz1exdx=0exxz+xex+xz1exdx=0exzex(1z)1exdx
その微分 z0exzex(1z)1exdx=011ex(zexzzex(1z))dx=011ex(xexz(x)(1)ex(1z))dx=011ex(xexzxex(1z))dx=011ex{x(exz+ex(1z))}dx=011ex{x(exz+ex(1z))}dx=g(z)

g(z)z=13の値

g(13)=011ex{x(ex13+ex(113))}dx=011ex{x(ex3+e2x3)}dx=0exex11ex{x(ex3+e2x3)}dx=0exex(1ex){x(ex3+e2x3)}dx=0exexexex{x(ex3+e2x3)}dx=0exex1{x(ex3+e2x3)}dx=0(k=0ekx){x(ex3+e2x3)}dxk=0ekx=exex1,k=0akx=axax1=k=00ekx{x(ex3+e2x3)}dx=k=00x(ekxex3+ekxe2x3)dx=k=00x(ex(k+13)+ex(k+23))dx=k=0(0xex(k+13)dx+0xex(k+23)dx)=k=0(1(k+13)2+1(k+23)2)0xeaxdx=1a2=k=0(1(3k+13)2+1(3k+23)2)=k=0(32(3k+1)2+32(3k+2)2)=k=0(32(3k+1)2+32(3k+2)2+32(3k+3)232(3k+3)2)=k=0(32(3k+1)2+32(3k+2)2+32(3k+3)2)k=0(32(3k+3)2)=k=0(32(3k+1)2+32(3k+2)2+32(3k+3)2)+k=032(3k+3)2=k=0(32(3k+1)2+32(3k+2)2+32(3k+3)2)+k=03232(k+1)2=k=0(32(3k+1)2+32(3k+2)2+32(3k+3)2)+k=01(k+1)2=k=0(32(3k+1)2+32(3k+2)2+32(3k+3)2)+k=11k2k=01(k+1)2=1(0+1)2+1(1+1)2+1(2+1)2+=112+122+132+=k=11k2=32k=0(1(3k+1)2+1(3k+2)2+1(3k+3)2)+k=11k2=9k=11k2+k=11k2k=0(1(3k+1)2+1(3k+2)2+1(3k+3)2)=(1(30+1)2+1(30+2)2+1(30+3)2)+(1(31+1)2+1(31+2)2+1(31+3)2)+=(112+122+132)+(142+152+162)+=k=11k2=8k=11k2

fとgが等しいことを利用

g(13)=f(13)8k=11k2=4π23k=11k2=184π23=π26

a^(-k)及びa^(-kx)の無限級数

ak及びakxの無限級数

akの無限級数

S=k=0ak=k=0(a1)kaR,|a|1=1|a|<1=k=0(1a)k=k=01ak=1a0+1a+1a2+1a3+=1+1a+1aa+1aa2+=1+1a+1a1a+1a1a2+=1+1a(1+1a+1a2+)=1+1aSS1aS=1S(11a)=1S=111a=1a1a=aa1

akxの無限級数

S=k=0akx=k=0(ax)ka,xR,|a|x=1|a|x<1=k=0(1ax)k=k=01akx=1a0x+1ax+1a2x+1a3x+=1+1ax+1axax+1axa2x+=1+1ax+1ax1ax+1ax1a2x+=1+1ax(1+1ax+1a2x+)=1+1axSS1axS=1S(11ax)=1S=111ax=1ax1ax=axax1

ガンマ凾数の相反公式の積分表示

ガンマ凾数の相反公式の積分表示

ベータ凾数のガンマ凾数での表示

B(p,q)|p=1q=Γ(p)Γ(q)Γ(p+q)|p=1qp,qC,Re(p),Re(q)>0=Γ(1q)Γ(q)Γ(1q+q)=Γ(1q)Γ(q)Γ(1)=Γ(1q)Γ(q)1Γ(1)=0t11etdt=0t0etdt=01etdt=0etdt0etdt=11=1=Γ(1q)Γ(q)

ベータ凾数の定義での表示

B(p,q)|p=1q=01tp1(1t)q1dt=0(1x+1)p1(11x+1)q11(x+1)2dxt=1x+1,x=1t1,dtdx=1(x+1)2t:01,x:0=0(1x+1)p1(11x+1)q11(x+1)2dx=0(1x+1)p1(xx+1)q11(x+1)2dx=01p1xq11(x+1)p1(x+1)q1(x+1)2dx=0xq1(x+1)(p1)+(q1)+2dx=0xq1(x+1)p+qdx=0xq1(x+1)1q+qdx=0xq1x+1dx

ガンマ凾数の相反公式の積分表示

Γ(1q)Γ(q)=0xq1x+1dx

ガンマ凾数の相反公式

ガンマ凾数の相反公式

Γ(z)Γ(1z)=Γ(z)Γ(z+1)Re(z)>0Re(1z)>00<Re(z)<1=Γ(z)(zΓ(z))Γ(z+1)=zΓ(z)=zΓ(z)Γ(z)=z(limnnzn!k=0n(z+k))(limnnzn!k=0n(z+k))Γ(z)=limnnzn!k=0n(z+k)=z(limnnzn!nzn!k=0n(z+k)(z+k))=z(limnn!n!k=0n(k2z2))ABAB=ABB=A0=1=z(limn(k=1nk)(k=1nk)k=0n(k2z2))n!=k=1nk=z(limnk=1nk2k=0n(k2z2))(k=mnAk)(k=mnBk)=k=mnAkBk=z(limnk=1nk2(02z2)k=1n(k2z2))=z1z2(limnk=1nk2k2z2)=1zk=1k2k2z2=111zk=0k2k2z2A=11A=1zk=1k2z2k2=ππ1zk=0k2z2k2=ππzk=0(1z2k2)=πsin(πz)sin(πz)=πzk=1(1(zk)2)(wikipedia)

xe^(-ax)の広義積分[0,∞]

xeaxの広義積分[0,]

0xeaxdx=limn0nxeaxdx=limn[[x1aeax]0n0n1aeaxdx]=limn[[n1aean01aea0]+1a0neaxdx]=limn[n1aean+1a0neaxdx]=1alimnnean+1alimn0neaxdx=0+1alimn0neaxdx(ex)(x)limneax=0=1alimn0neaxdx=1a1a0eaxdx=1a=1a2

e^(-ax)の広義積分[0,∞]

eaxの広義積分[0,]

0eaxdx=limn0neaxdx=limn0eu(1a)duu=ax,dudx=a,dx=1adux:0n,u:0an=limn1a0aneudu=limn1a[eu]0an=limn1a[eane0]=1a[01]=1a(1)=1a

cos(z)の微分

cos(z)の微分

u+ivで表す

cos(z)=cos(x)cos(iy)sin(x)sin(iy)=cos(x)cosh(y)sin(x)isinh(y)cos(iy)=icosh(y),sin(iy)=isinh(y)=cos(x)cosh(y)isin(x)sinh(y)=u(x,y)+iv(x,y) {u(x,y)=cos(x)cosh(y)v(x,y)=sin(x)sinh(y)x,yR

u,vx,yで偏微分する

u(x,y)x=xcos(x)cosh(y)x,yR=cosh(y)xcos(x)=cosh(y)(sin(x))ddθcos(θ)=sin(θ)=sin(x)cosh(y) u(x,y)y=ycos(x)cosh(y)x,yR=cos(x)ycosh(y)=cos(x)sinh(y)ddθcosh(θ)=sinh(θ) v(x,y)x=x(sin(x)sinh(y))x,yR=sinh(y)xsin(x)=sinh(y)cos(x)ddθsin(θ)=cos(θ)=cos(x)sinh(y) v(x,y)y=y(sin(x)sinh(y))x,yR=sin(x)ysinh(y)=sin(x)cosh(y)ddθsinh(θ)=cosh(θ)

コーシー・リーマンの関係式を満たす

{ux=vyvx=uy

実軸方向での微分

ddzcos(z)=u(x,y)x+iv(x,y)x=sin(x)cosh(y)+i(cos(x)sinh(y))=sin(x)cosh(y)icos(x)sinh(y)=(sin(x)cos(iy)+cos(x)sin(iy))cos(iy)=icosh(y),sin(iy)=isinh(y)=sin(x+iy)=sin(z)

cos(i x), sin(i x) (純虚数に対するcos, sin)

cos(ix),sin(ix) (純虚数に対するcos,sin)

cos(ix)

cos(ix)=ei(ix)+ei(ix)2xR=ex+ex2=cosh(x)

sin(ix)

sin(ix)=ei(ix)ei(ix)2ixR=exex2i=1i(exex)2=ii1isinh(x)=isinh(x)

cosh(ix),sinh(ix) (純虚数に対するcosh,sinh)

cosh(ix),sinh(ix) (純虚数に対するcosh,sinh)

ディガンマ凾数の相反公式

ディガンマ凾数の相反公式

ディガンマ凾数の定義

ψ(z)=ddzlog(Γ(z))=Γ(z)Γ(z)

1zのディガンマ凾数

ψ(1z)=ddzlog(Γ(1z))=ddulog(Γ(u))dudzu=1z,dudz=1=ddzlog(Γ(1z))=ddzlog(Γ(z)Γ(z)Γ(1z))=ddzlog(1Γ(z)πsin(πz))Γ(z)Γ(1z)=πsin(πz)={ddzlog(π)ddzlog(sin(πz))ddzlog(Γ(z))}={0πcot(πz)ψ(z)}ddzlogsin(πz)=πcot(πz)ddzlogΓ(z)=ψ(z),()=πcot(πz)+ψ(z)

ディガンマ凾数の相反公式

ψ(1z)=πcot(πz)+ψ(z)ψ(1z)ψ(z)=πcot(πz)

log(sin(πz))の微分

log(sin(πz))の微分

ddzlog(sin(πz))=ddflog(sin(f))dfdzf=πz,fC=ddglog(g)dgdfdfdzg=sin(f),gC=1gcos(f)πddglog(g)=1gddfsin(f)=cos(f)ddzπz=π=1sin(f)cos(f)π=1sin(πz)cos(πz)π=πcos(πz)sin(πz)=π1tan(πz)tan(πz)=sin(πz)cos(πz)=πcot(πz)

sin(z)の微分

sin(z)の微分

u+ivで表す

sin(z)=sin(x)cos(iy)+cos(x)sin(iy)=sin(x)cosh(y)+cos(x)isinh(y)cos(iy)=icosh(y),sin(iy)=isinh(y)=sin(x)cosh(y)+icos(x)sinh(y)=u(x,y)+iv(x,y) {u(x,y)=sin(x)cosh(y)v(x,y)=cos(x)sinh(y)x,yR

u,vx,yで偏微分する

u(x,y)x=xsin(x)cosh(y)x,yR=cosh(y)xsin(x)=cosh(y)cos(x)ddθsin(θ)=cos(θ)=cos(x)cosh(y) u(x,y)y=ysin(x)cosh(y)x,yR=sin(x)ycosh(y)=sin(x)sinh(y)ddθcosh(θ)=sinh(θ) v(x,y)x=xcos(x)sinh(y)x,yR=sinh(y)xcos(x)=sinh(y)(sin(x))ddθcos(θ)=sin(θ)=sin(x)sinh(y) v(x,y)y=ycos(x)sinh(y)x,yR=cos(x)ysinh(y)=cos(x)cosh(y)ddθsinh(θ)=cosh(θ)

コーシー・リーマンの関係式を満たす

{ux=vyvx=uy

実軸方向での微分

ddzsin(z)=u(x,y)x+iv(x,y)x=cos(x)cosh(y)+i(sin(x)sinh(y))=cos(x)cosh(y)isin(x)sinh(y)=cos(x)cos(iy)sin(x)sin(iy)cos(iy)=cosh(y),sin(iy)=isinh(y)=cos(x+iy)=cos(z)

log(z)の微分

log(z)の微分

u+ivで表す

log(z)=log(x+iy)z=x+iy,zC,x,yR=log(|z|eiarg(z))z=|z|eiarg(z),|z|=|x+iy|=x2+y2,arg(z)()arg(z)=Arg(z)+2nπ,nZπ<Arg(z)π,Arg(z)=log(|z|)+log(eiarg(z))=log(|z|)+log(ei(Arg(z)+2nπ))=log(|z|)+i(Arg(z)+2nπ)=u(x,y)+iv(x,y)v(x,y)() {u(x,y)=log(x2+y2)v(x,y)=Arg(z)+2nπ={arctan(yx)+2nπ(x>0)arctan(yx)+π+2nπ(x<0y0)arctan(yx)π+2nπ(x<0y<0)π2+2nπ(x=0y>0)π2+2nπ(x=0y<0)identerminate(x=0y=0)x,yR,nZ

u,vx,yで偏微分する

u(x,y)x=xlog(x2+y2)=flog(f)fxf=x2+y2=(x2+y2)12,fR=flog(f)fggxg=x2+y2,gR=1f12(g)122x=1x2+y212x2+y22x=xx2+y2 u(x,y)y=ylog(x2+y2)=flog(f)fyf=x2+y2=(x2+y2)12,fR=flog(f)fggyg=x2+y2,gR=1f12(g)122y=1x2+y212x2+y22y=yx2+y2 v(x,y)x=xArg(x+iy)+2nπ={x(arctan(yx)+2nπ)(x>0)x(arctan(yx)+π+2nπ)(x<0y0)x(arctan(yx)π+2nπ)(x<0y<0)x(π2+2nπ)(x=0y>0)x(π2+2nπ)(x=0y<0)identerminate(x=0y=0)={yx2+y2(x>0)yx2+y2(x<0y0)yx2+y2(x<0y<0)0(x=0y>0)0(x=0y<0)identerminate(x=0y=0) v(x,y)y=yArg(x+iy)+2nπ={y(arctan(yx)+2nπ)(x>0)y(arctan(yx)+π+2nπ)(x<0y0)y(arctan(yx)π+2nπ)(x<0y<0)y(π2+2nπ)(x=0y>0)y(π2+2nπ)(x=0y<0)identerminate(x=0y=0)={xx2+y2(x>0)xx2+y2(x<0y0)xx2+y2(x<0y<0)0(x=0y>0)0(x=0y<0)identerminate(x=0y=0)

コーシー・リーマンの関係式を満たす

{ux=vyvx=uy

実軸方向での微分

ddzlog(z)=u(x,y)x+iv(x,y)x=xx2+y2+iyx2+y2=xiyx2+y2=xiy(x+iy)(xiy)(x+iy)(xiy)=x2+ixyixyi2y2=x2+y2=1x+iy=1zz=x+iy

虚軸方向での微分

ddzlog(z)=v(x,y)yiu(x,y)y=xx2+y2iyx2+y2=xiyx2+y2=xiy(x+iy)(xiy)(x+iy)(xiy)=x2+ixyixyi2y2=x2+y2=1x+iy=1zz=x+iy

cot(az)の微分

cot(az)の微分

ddzcot(az)=ddwcot(w)dwdzaR,zCw=az,dwdz=a=1sin2(az)addwcot(w)=1sin2(w)=asin2(az)

cot(ax)の微分

cot(ax)の微分

ddxcot(ax)=ddx{tan(ax)}1a,xR=ddu{tan(u)}1dudxu=ax,dudx=a=ddv{v(u)}1dvdududxv=tan(u),dvdu=1+tan2(u)={v(u)}2dvdududx=1tan2(u)(1+tan2(u))dudx=1tan2(ax)(1+tan2(ax))a=a(1+sin2(ax)cos2(ax))sin2(ax)cos2(ax)=cos2(ax)a(1+sin2(ax)cos2(ax))sin2(ax)=a(cos2(ax)+cos2(ax)sin2(ax)cos2(ax))sin2(ax)=a(cos2(ax)+sin2(ax))sin2(ax)=a1sin2(ax)=asin2(ax)

cot(z)の微分

u(x,y)xで偏微分する

ux=xcos(x)sin(x)sin2(x)+sinh2(y)=sinh2(y)(cos2(x)sin2(x))sin2(x)(sin2(x)+sinh2(y))2=cos2(x)sinh2(y)sinh2(y)sin2(x)sin2(x)(sin2(x)+sinh2(y))2=cos2(x)sinh2(y)sin2(x)(1+sinh2(y))(sin2(x)+sinh2(y))2=cos2(x)sinh2(y)sin2(x)cosh2(y)(sin2(x)+sinh2(y))2

u(x,y)yで偏微分する

uy=ycos(x)sin(x)sin2(x)+sinh2(y)=2sin(x)cos(x)sinh(y)cosh(y)(sin2(x)+sinh2(y))2

v(x,y)xで偏微分する

vx=xcosh(y)sinh(y)sin2(x)+sinh2(y)=2sin(x)cos(x)sinh(y)cosh(y)(sin2(x)+sinh2(y))2

v(x,y)yで偏微分する

vy=ycosh(y)sinh(y)sin2(x)+sinh2(y)=cosh2(y)(sinh2(y)sin2(x))sinh2(y)(sinh2(y)+sin2(x))(sin2(x)+sinh2(y))2=cosh2(y)sinh2(y)cosh2(y)sin2(x)sinh2(y)sinh2(y)sinh2(y)sin2(x)(sin2(x)+sinh2(y))2=sinh2(y)(cosh2(y)sinh2(y))cosh2(y)sin2(x)sinh2(y)sin2(x)(sin2(x)+sinh2(y))2=sinh2(y)cosh2(y)sin2(x)sinh2(y)sin2(x)(sin2(x)+sinh2(y))2=sinh2(y)(1sin2(x))cosh2(y)sin2(x)(sin2(x)+sinh2(y))2=cos2(x)sinh2(y)sin2(x)cosh2(y)(sin2(x)+sinh2(y))2

コーシー・リーマンの関係式を満たす

{ux=vyuy=vx

実軸(x)方向の微分

ddzcot=u(x,y)x+iv(x,y)x=cos2(x)sinh2(y)sin2(x)cosh2(y)(sin2(x)+sinh2(y))2+i2sin(x)cos(x)sinh(y)cosh(y)(sin2(x)+sinh2(y))2=(cos(x)sinh(y)+isin(x)cosh(y))2(sin2(x)+sinh2(y))2=(cos(x)sinh(y)+isin(x)cosh(y))2(sin2(x)+sinh2(y))2=(cos(x)sinh(y)+isin(x)cosh(y))2(sin2(x)+sinh2(y))2=(cos(x)1isin(iy)+isin(x)cos(iy))2(sin2(x)+(1isin(iy))2)2cos(iy)=icosh(y),sin(iy)=isinh(y),sinh(y)=1isin(iy)=i2i2(cos(x)1isin(iy)+isin(x)cos(iy))2(sin2(x)+(1i)2(sin(iy))2)2=1i2(i(cos(x)1isin(iy)+isin(x)cos(iy)))2(sin2(x)sin2(iy))2=11(cos(x)sin(iy)sin(x)cos(iy))2(sin2(x)sin2(iy))2=((cos(x)sin(iy)+sin(x)cos(iy)))2(sin2(x)sin2(iy))2=(sin(xiy))2(sin(x+iy)sin(xiy))2sin2(x)sin2(iy)=sin2(x)sin2(iy)sin2(x)sin2(iy)+sin2(x)sin2(iy)=sin2(x)(1sin2(iy))sin2(iy)(1sin2(x))=sin2(x)cos2(iy)sin2(iy)cos2(x)={sin(x)cos(iy)+sin(iy)cos(x)}{sin(x)cos(iy)sin(iy)cos(x)}=sin(x+iy)sin(xiy)=sin2(xiy)sin2(x+iy)sin2(xiy)=1sin2(x+iy)=1sin2(z)

cot(z)をu(x,y)+iv(x,y)で表す

cot(z)=1tan(z)zC=cos(z)sin(z)=cos(x+iy)sin(x+iy)x,yR=cos(x)cos(iy)sin(x)sin(iy)sin(x)cos(iy)+cos(x)sin(iy)cos(α+β)=cos(α)cos(β)sin(α)sin(β)sin(α+β)=cos(α)sin(β)+sin(α)cos(β)=cos(x)cosh(y)sin(x)isinh(y)sin(x)cosh(y)+cos(x)isinh(y)cos(iy)=ei(iy)+ei(iy)2=ey+ey2=cosh(y)sin(iy)=ei(iy)ei(iy)2i=eyey2i=1i(eyey)2=ii1isinh(y)=isinh(y)=cos(x)cosh(y)isin(x)sinh(y)sin(x)cosh(y)+icos(x)sinh(y)sin(x)cosh(y)icos(x)sinh(y)sin(x)cosh(y)icos(x)sinh(y)=cos(x)cosh(y)sin(x)cosh(y)+cos(x)cosh(y)(icos(x)sinh(y))isin(x)sinh(y)sin(x)cosh(y)isin(x)sinh(y)(icos(x)sinh(y))sin2(x)cosh2(y)+cos2(x)sinh2(y)=cos(x)sin(x)cosh2(y)icos2(x)cosh(y)sinh(y)isin2(x)cosh(y)sinh(y)cos(x)sin(x)sinh(y)sin2(x)cosh2(y)+(1sin2(x))sinh2(y)=cos(x)sin(x)cosh2(y)icos2(x)cosh(y)sinh(y)isin2(x)cosh(y)sinh(y)cos(x)sin(x)sinh(y)sin2(x)cosh2(y)+sinh2(y)sin2(x)sinh2(y)=cos(x)sin(x)(cosh2(y)sinh(y))i{(cos2(x)+sin2(x))cosh(y)sinh(y)}sin2(x)(cosh2(y)sinh2(y))+sinh2(y)=cos(x)sin(x)icosh(y)sinh(y)sin2(x)+sinh2(y)=cos(x)sin(x)sin2(x)+sinh2(y)+icosh(y)sinh(y)sin2(x)+sinh2(y)=u(x,y)+iv(x,y) {u(x,y)=cos(x)sin(x)sin2(x)+sinh2(y)v(x,y)=cosh(y)sinh(y)sin2(x)+sinh2(y)

wzの微分

wzの微分

u+ivで表す

wz=(a+ib)(x+iy)a,b,x,yR,w,zC=axby+i(ay+bx)=u(x,y)+iv(x,y)

u,vx,yで偏微分する

u(x,y)x=x(axby)=au(x,y)y=y(axby)=bv(x,y)x=x(ay+bx)=bv(x,y)y=y(ay+bx)=a

コーシー・リーマンの関係式を満たす

{ux=vyuy=vx

実軸(x)方向の微分

ddzwz=u(x,y)x+iv(x,y)x=a+ib=w

虚軸(y)方向の微分

ddzwz=v(x,y)yiu(x,y)y=ai(b)=a+ib=w

azの微分

azの微分

u+ivで表す

az=a(x+iy)a,x,yR,zC=ax+iay=u(x,y)+iv(x,y) {u(x,y)=axv(x,y)=ay

u,vx,yで偏微分する

u(x,y)x=xax=au(x,y)y=yax=0v(x,y)x=xay=0v(x,y)y=yay=a

コーシー・リーマンの関係式を満たす

{ux=vyuy=vx

実軸方向での微分

ddzaz=u(x,y)x+iv(x,y)x=a+i0=a

虚軸方向での微分

ddzaz=v(x,y)yiu(x,y)y=ai0=a

コーシー・リーマンの関係式

コーシー・リーマンの関係式

複素平面の実軸方向の微分(偏微分)

limΔz0f(z0+Δz)f(z0)Δz=limΔx0{u(x0+Δx,y0)+iv(x0+Δx,y0)}{u(x0,y0)+iv(x0,y0)}Δxz0,ΔzinC,x0,y0,ΔxR=limΔx0{u(x0+Δx,y0)u(x0,y0)Δx+iv(x0+Δx,y0)v(x0,y0)Δx}=u(x0,y0)x+iv(x0,y0)x

複素平面の虚軸方向の微分(偏微分)

limΔz0f(z0+Δz)f(z0)Δz=limΔy0{u(x0,y0+Δy)+iv(x0,y0+Δy)}{u(x0,y0)+iv(x0,y0)}iΔyz0,ΔzinC,x0,y0,ΔyR=limΔy0{u(x0,y0+Δy)u(x0,y0)iΔy+iv(x0,y0+Δy)v(x0,y0)iΔy}=1iu(x0,y0)y+iiv(x0,y0)y=ii1iu(x0,y0)y+v(x0,y0)y=i1u(x0,y0)y+v(x0,y0)y=iu(x0,y0)y+v(x0,y0)y=v(x0,y0)y+i{u(x0,y0)y}

複素平面の各軸微分結果の実部同士,虚部同士が等しくなる場合という関係

{ux=vyvx=uy

ディガンマ凾数同士の差

ディガンマ凾数同士の差

ψ(y)ψ(x)=limn{log(n)k=0n1y+k}limn{log(n)k=0n1x+k}ψ(x)=limn{log(n)k=0n1x+k}=limn{log(n)k=0n1y+klog(n)+k=0n1x+k}=limn{k=0n1x+kk=0n1y+k}=k=01x+kk=01y+k=01ux11udu01uy11uduk=01z+k=01uz11udu=01(ux11uuy11u)du=01ux1uy11udu

u^(z-1)/(1-u)における定積分[0,1],もしくは1/(z+k)の無限級数

uz11uにおける定積分[0,1],もしくは1z+kの無限級数

01uz11udu=01uz111udu=01uz1(1+u+u2+)du11u=1+u+u2+(|u|<1)=01(uz1+uz1u+uz1u2+)du=01(uz1+uz1+1+uz1+2+)du=01(uz1+uz+uz+1+)du=[1z1+1uz1+1+1z+1uz+1+1z+1+1uz+1+1+]01=[1zuz+1z+1uz+1+1z+2uz+2+]01=[1z1z1z0z+1z+11z+11z+10z+1+1z+21z+21z+20z+2+]=1z+1z+1+1z+2+=k=01z+k

1/(1-x)のマクローリン展開(ただし-1<x<1)

11xのマクローリン展開(1<x<1)

a点まわりのテイラー展開

f(x)=k=0f(k)(a)x!(xa)ka=10!f(0)(a)(xa)0+11!f(1)(a)(xa)1+12!f(2)(a)(xa)2+f(n)(x):f(x)n

マクローリン展開(0点まわりのテイラー展開)

f(x)=k=0f(k)(a)x!(xa)k|a=0=k=0f(k)(0)x!(x0)k=k=0f(k)(0)x!(x)k=10!f(0)(0)x0+11!f(1)(0)x+12!f(2)(0)x2+

マクローリン展開(0点まわりのテイラー展開)

11x=k=01k!f(k)(0)xk(1<x<1)=10![(1x)1]x=0x0+11![(1x)11(1)]x=0x1+12![2(1x)21(1)]x=0x2+13![6(1x)31(1)]x=0x3+=1+x+x2+x3+

ディガンマ凾数の極限表示

ディガンマ凾数

ψ(z)=ddzlog(Γ(z))=Γ(z)Γ(z)

ディガンマ凾数の極限表示

Γ(z)=limnnzn!k=0n(z+k)log(Γ(z))=log(limnnzn!k=0n(z+k))=limnlog(nzn!k=0n(z+k))=limn{log(nz)+log(n!)log(k=0n(z+k))}=limn{log(nz)+log(n!)log(z+0)log(z+1)log(z+2)log(z+n)}ψ(z)=ddzlog(Γ(z))=ddz[limn{log(nz)+log(n!)log(z+0)log(z+1)log(z+2)log(z+n)}]=limn[ddz{log(nz)+log(n!)log(z+0)log(z+1)log(z+2)log(z+n)}]=limn{log(n)1z1z+11z+21z+n}=limn[log(n){1z+1z+1+1z+2++1z+n}]=limn{log(n)k=0n1z+k}

ガンマ凾数の極限表示

ガンマ凾数の極限表示

ガンマ凾数の定義と極限表示

Γ(z)=0tz1etdt(Re(z)>0)=limnnzn!k=0n(z+k)

Gnの導入

Gn(z)=0ntz1(1tn)ndt

Gnの総乗表示

Gn(z)=0ntz1(1tn)ndt=01(nu)z1(1nun)nndut=nu,u=tn,dtdu=n,dt=ndut:0n,u:01=nz01uz1(1u)ndu=nzgn(z)gn(z)=01uz1(1u)ndug0(z)=01uz1(1u)0du=01uz1du=[uzz]u=01=1zgn(z)=01uz1(1u)ndu=01(uzz)(1u)ndudduuzz=1zzuz1=uz1=[uzz(1u)n]u=0101uzz((1u)n)du=[1zz(11)n0zz(10)n]01uzz(n(1u)n1(1))du=0+nz01uz(1u)n1du=nzgn1(z+1)=nzn1z+1gn2(z+2)=nzn1z+1n2z+2gn3(z+3)=nzn1z+1n2z+2n(n1)z+(n1)gnn(z+n)=nzn1z+1n2z+21z+(n1)g0(z+n)=nzn1z+1n2z+21z+(n1)1z+n=n!k=0n(z+k)Gn(z)=nzgn(z)=nzn!k=0n(z+k)=nzn!k=0n(z+k)

Gnの極限

limnGn(z)=limn0ntz1(1tn)ndt=0tz1etdtlimn(1tn)n=limn(1+tn)n=et=Γ(z)

よってGnの総乗表示での極限もΓ(z)

limnGn(z)=limnnzn!k=0n(z+k)=Γ(z)

偏角の微分

z=x+iyzZ,x,yR=reiθr,θR,r0,π<θπr=|z|=x2+y2arg(z)=θ+2nπ(nZ)=Arg(z)+2nπ(nZ) Arg(z)=Arg(x+iy)={tan1(yx)(x>0)tan1(yx)+π(x<0y0)tan1(yx)π(x<0y<0)π2(x=0y>0)π2(x=0y<0)(x=0y=0)

xでの偏微分

xarg(z)=x{θ+2nπ}=x{Arg(z)+2nπ}=xArg(z)+x2nπ=xArg(z)xC=0(Cx) xArg(z)=xArg(x+iy)={xtan1(yx)=yx2+y2(x>0)xtan1(yx)+π=yx2+y2(x<0y0)xtan1(yx)π=yx2+y2(x<0y<0)xπ2=0(x=0y>0)xπ2=0(x=0y<0)(x=0y=0)xtan1(yx)=yx2+y2

yでの偏微分

yarg(z)=y{θ+2nπ}=y{Arg(z)+2nπ}=yArg(z)+y2nπ=yArg(z)yC=0(Cx) yArg(z)=yArg(x+iy)={ytan1(yx)=xx2+y2(x>0)ytan1(yx)+π=xx2+y2(x<0y0)ytan1(yx)π=xx2+y2(x<0y<0)yπ2=0(x=0y>0)yπ2=0(x=0y<0)(x=0y=0)ytan1(yx)=xx2+y2

arctan(y/x)の偏微分

tan1(yx)の偏微分

θ=tan1(yx)

tan1(yx)xでの偏微分

xtan1(yx)={utan1(u)}uxu=yx=11+u2xyxutan1(u)=11+u2=11+y2x2yxx1=1x2+y2x2y(x2)=x2x2+y2y(x2)=yx2+y2

tan1(yx)yでの偏微分

ytan1(yx)={utan1(u)}uyu=yx=11+u2yyxutan1(u)=11+u2=11+y2x2x1yy=1x2+y2x2x11=x2x2+y2x1=xx2+y2

arctan(x)の微分

tan1(x)の微分

y=tan1(x)x=tan(y)dxdy=ddytan(y)=1+tan2(y)dydx=11+tan2(y)dydx=1dxdy()=11+x2x=tan(y)

逆凾数の微分 (微分可能な凾数の逆凾数の微分)

逆凾数の微分 (微分可能な凾数の逆凾数の微分)

凾数,逆凾数における独立変数の差と従属変数の差の関係

y=f(x)x=f1(y)f(x) k=f(x+h)f(x)hkf(x)+k=y+k=f(x+h)x+h=f1(y+k) x+h=f1(y+k)h=f1(y+k)x=f1(y+k)f1(y)kh limk0f1(y+k)=f1(y)h=limk0(f1(y+k)f1(y))=(limk0f1(y+k))f1(y)=f1(y)f1(y)=0k0h0 k=f(x+h)f(x)limh0f(x+h)=f(x)k=limh0(f(x+h)f(x))=(limh0f(x+h))f(x)=f(x)f(x)=0h0k0 h0k0limk0hk=limh0hk

逆凾数の微分

dxdy=limk0f1(y+k)f1(y)k=limk0x+hxk=limk0hk=limh0hk=limh01kh=1limh0kh=1limh0f(x+h)f(x)h=1dydx

tan(x)の微分 2(微分の定義からの場合)

tan(x)の微分 2

(sin, cosの微分を既知とした場合) y=tan(x)ddxtan(x)=limh0tan(x+h)tan(x)h=limh01h{tan(x)+tan(h)1tan(x)tan(h)tan(x)}=limh01htan(x)+tan(h)tan(x)(1tan(x)tan(h))1tan(x)tan(h)=limh01htan(x)+tan(h)tan(x)+tan2(x)tan(h)1tan(x)tan(h)=limh01htan(h)+tan2(x)tan(h)1tan(x)tan(h)=limh01htan(h)(1+tan2(x))1tan(x)tan(h)=limh0tan(h)h1+tan2(x)1tan(x)tan(h)=11+tan2(x)1tan(x)0limh0tan(h)h=limh01hsin(h)cos(h)=limh0sin(h)h1cos(h)=11=1limh0sin(h)h=1limh0cos(h)=1=1+tan2(x) 1+tan2(x)=1+{sin(x)cos(x)}2=cos2(x)+sin2(x)cos2(x)=1cos2(x)cos2(x)+sin2(x)=1=sec2(x)

tan(x)の微分 1 (sin, cosの微分を既知とした場合)

tan(x)の微分 1

(微分の定義からの場合) y=tan(x)ddxtan(x)=ddxsin(x)cos(x)=ddxsin(x){cos(x)}1={cos(x)}1ddxsin(x)+sin(x)ddx{cos(x)}1={cos(x)}1{cos(x)}+sin(x)[{cos(x)}2]ddx{cos(x)}=1+sin(x)cos2(x){sin(x)}=1+sin2(x)cos2(x)=1+{sin(x)cos(x)}2=1+tan2(x)
1+tan2(x)=1+{sin(x)cos(x)}2=cos2(x)+sin2(x)cos2(x)=1cos2(x)cos2(x)+sin2(x)=1=sec2(x)