\(\log{\left(z\right)}\)の微分
\(u+iv\)で表す
$$\begin{eqnarray}
\log{\left(z\right)}
&=&\log{\left(x+iy\right)}
\;\ldots\;z=x+iy,\;z\in\mathbb{C},\;x,y\in\mathbb{R}
\\&=&\log{\left(
|z| e^{i\arg{\left(z\right)}}
\right)}
\\&&\;\ldots\;z=|z| e^{i\arg{\left(z\right)}},\;|z|=|x+iy|=\sqrt{x^2+y^2}は実数,\:\arg{\left(z\right)}は実数で多価(集合)
\\&&\;\ldots\;\arg{\left(z\right)}=\mathrm{Arg}{\left(z\right)}+2n\pi,\;n\in\mathbb{Z}
\\&&\;\ldots\;-\pi\lt\mathrm{Arg}{\left(z\right)}\leq\pi,\;\mathrm{Arg}{\left(z\right)}は実数で一価
\\&=&\log{\left(|z|\right)}+\log{\left(e^{i\arg{\left(z\right)}}\right)}
\\&=&\log{\left(|z|\right)}+\log{\left(e^{i\left(\mathrm{Arg}{\left(z\right)}+2n\pi\right)}\right)}
\\&=&\log{\left(|z|\right)}+i\left(\mathrm{Arg}{\left(z\right)}+2n\pi\right)
\\&=&u(x,y)+iv(x,y)\;\ldots\;v(x,y)は実数で多価(集合)
\end{eqnarray}$$
$$\left\{\begin{eqnarray}
u(x,y)&=&\log{\left(\sqrt{x^2+y^2}\right)}
\\v(x,y)&=&\mathrm{Arg}{\left(z\right)}+2n\pi=\begin{cases}
\arctan{\left(\frac{y}{x}\right)}&+2n\pi & (x\gt0)
\\\arctan{\left(\frac{y}{x}\right)}+\pi&+2n\pi & (x\lt0\;かつ\;y\geq0)
\\\arctan{\left(\frac{y}{x}\right)}-\pi&+2n\pi & (x\lt0\;かつ\;y\lt0)
\\\frac{\pi}{2}&+2n\pi & (x=0\;かつ\;y\gt0)
\\-\frac{\pi}{2}&+2n\pi & (x=0\;かつ\;y\lt0)
\\\mathrm{identerminate} && (x=0\;かつ\;y=0)
\end{cases}
\end{eqnarray}\;\ldots\;x,y\in\mathbb{R},\;n\in\mathbb{Z}\right.$$
\(u,v\)を\(x,y\)で偏微分する
$$\begin{eqnarray}
\frac{\partial u(x,y)}{\partial x}
&=&\frac{\partial}{\partial x}\log{\left(\sqrt{x^2+y^2}\right)}
\\&=&\frac{\partial}{\partial f}\log{\left(f\right)}\frac{\partial f}{\partial x}
\;\ldots\;f=\sqrt{x^2+y^2}=\left(x^2+y^2\right)^{\frac{1}{2}},\;f\in\mathbb{R}
\\&=&\frac{\partial}{\partial f}\log{\left(f\right)}
\frac{\partial f}{\partial g}\frac{\partial g}{\partial x}
\;\ldots\;g=x^2+y^2,\;g\in\mathbb{R}
\\&=&\frac{1}{f}\;\frac{1}{2}\left(g\right)^{-\frac{1}{2}}\;2x
\\&=&\frac{1}{\sqrt{x^2+y^2}}\;\frac{1}{2\sqrt{x^2+y^2}}\;2x
\\&=&\frac{x}{x^2+y^2}
\end{eqnarray}$$
$$\begin{eqnarray}
\frac{\partial u(x,y)}{\partial y}
&=&\frac{\partial}{\partial y}\log{\left(\sqrt{x^2+y^2}\right)}
\\&=&\frac{\partial}{\partial f}\log{\left(f\right)}\frac{\partial f}{\partial y}
\;\ldots\;f=\sqrt{x^2+y^2}=\left(x^2+y^2\right)^{\frac{1}{2}},\;f\in\mathbb{R}
\\&=&\frac{\partial}{\partial f}\log{\left(f\right)}
\frac{\partial f}{\partial g}\frac{\partial g}{\partial y}
\;\ldots\;g=x^2+y^2,\;g\in\mathbb{R}
\\&=&\frac{1}{f}\;\frac{1}{2}\left(g\right)^{-\frac{1}{2}}\;2y
\\&=&\frac{1}{\sqrt{x^2+y^2}}\;\frac{1}{2\sqrt{x^2+y^2}}\;2y
\\&=&\frac{y}{x^2+y^2}
\end{eqnarray}$$
$$\begin{eqnarray}
\frac{\partial v(x,y)}{\partial x}
&=&\frac{\partial}{\partial x}\mathrm{Arg}{\left(x+iy\right)}+2n\pi
\\&=&\begin{cases}
\frac{\partial}{\partial x}\left(\arctan{\left(\frac{y}{x}\right)}+2n\pi\right) & (x\gt0)
\\\frac{\partial}{\partial x}\left(\arctan{\left(\frac{y}{x}\right)}+\pi+2n\pi\right) & (x\lt0\;かつ\;y\geq0)
\\\frac{\partial}{\partial x}\left(\arctan{\left(\frac{y}{x}\right)}-\pi+2n\pi\right) & (x\lt0\;かつ\;y\lt0)
\\\frac{\partial}{\partial x}\left(\frac{\pi}{2}+2n\pi\right) & (x=0\;かつ\;y\gt0)
\\\frac{\partial}{\partial x}\left(-\frac{\pi}{2}+2n\pi\right) & (x=0\;かつ\;y\lt0)
\\\mathrm{identerminate} & (x=0\;かつ\;y=0)
\end{cases}
\\&=&\begin{cases}
\href{https://shikitenkai.blogspot.com/2021/07/blog-post_9.html}{\frac{-y}{x^2+y^2}} & (x\gt0)
\\\href{https://shikitenkai.blogspot.com/2021/07/blog-post_9.html}{\frac{-y}{x^2+y^2}} & (x\lt0\;かつ\;y\geq0)
\\\href{https://shikitenkai.blogspot.com/2021/07/blog-post_9.html}{\frac{-y}{x^2+y^2}} & (x\lt0\;かつ\;y\lt0)
\\\href{https://shikitenkai.blogspot.com/2021/07/blog-post_9.html}{0} & (x=0\;かつ\;y\gt0)
\\\href{https://shikitenkai.blogspot.com/2021/07/blog-post_9.html}{0} & (x=0\;かつ\;y\lt0)
\\\mathrm{identerminate}& (x=0\;かつ\;y=0)
\end{cases}
\end{eqnarray}$$
$$\begin{eqnarray}
\frac{\partial v(x,y)}{\partial y}
&=&\frac{\partial}{\partial y}\mathrm{Arg}{\left(x+iy\right)}+2n\pi
\\&=&\begin{cases}
\frac{\partial}{\partial y}\left(\arctan{\left(\frac{y}{x}\right)}+2n\pi\right) & (x\gt0)
\\\frac{\partial}{\partial y}\left(\arctan{\left(\frac{y}{x}\right)}+\pi+2n\pi\right) & (x\lt0\;かつ\;y\geq0)
\\\frac{\partial}{\partial y}\left(\arctan{\left(\frac{y}{x}\right)}-\pi+2n\pi\right) & (x\lt0\;かつ\;y\lt0)
\\\frac{\partial}{\partial y}\left(\frac{\pi}{2}+2n\pi\right) & (x=0\;かつ\;y\gt0)
\\\frac{\partial}{\partial y}\left(-\frac{\pi}{2}+2n\pi\right) & (x=0\;かつ\;y\lt0)
\\\mathrm{identerminate} & (x=0\;かつ\;y=0)
\end{cases}
\\&=&\begin{cases}
\href{https://shikitenkai.blogspot.com/2021/07/blog-post_9.html}{\frac{x}{x^2+y^2}} & (x\gt0)
\\\href{https://shikitenkai.blogspot.com/2021/07/blog-post_9.html}{\frac{x}{x^2+y^2}} & (x\lt0\;かつ\;y\geq0)
\\\href{https://shikitenkai.blogspot.com/2021/07/blog-post_9.html}{\frac{x}{x^2+y^2}} & (x\lt0\;かつ\;y\lt0)
\\\href{https://shikitenkai.blogspot.com/2021/07/blog-post_9.html}{0} & (x=0\;かつ\;y\gt0)
\\\href{https://shikitenkai.blogspot.com/2021/07/blog-post_9.html}{0} & (x=0\;かつ\;y\lt0)
\\\mathrm{identerminate}& (x=0\;かつ\;y=0)
\end{cases}
\end{eqnarray}$$
コーシー・リーマンの関係式を満たす
$$\href{https://shikitenkai.blogspot.com/2021/07/blog-post_19.html}{\left\{
\begin{eqnarray}
\frac{\partial u}{\partial x}&=&\frac{\partial v}{\partial y}
\\\frac{\partial v}{\partial x}&=&-\frac{\partial u}{\partial y}
\end{eqnarray}
\right.}$$
実軸方向での微分
$$\begin{eqnarray}
\frac{\mathrm{d}}{\mathrm{d}z}\log{\left(z\right)}
&=&\href{https://shikitenkai.blogspot.com/2021/07/blog-post_19.html}{\frac{\partial u(x,y)}{\partial x}+i\frac{\partial v(x,y)}{\partial x}}
\\&=&\frac{x}{x^2+y^2}+i\frac{-y}{x^2+y^2}
\\&=&\frac{x-iy}{x^2+y^2}
\\&=&\frac{\cancel{x-iy}}{(x+iy)\cancel{(x-iy)}}
\\&&\;\ldots\;(x+iy)(x-iy)=x^2\cancel{+ixy}\cancel{-ixy}-i^2y^2=x^2+y^2
\\&=&\frac{1}{x+iy}
\\&=&\frac{1}{z}\;\ldots\;z=x+iy
\end{eqnarray}$$
虚軸方向での微分
$$\begin{eqnarray}
\frac{\mathrm{d}}{\mathrm{d}z}\log{\left(z\right)}
&=&\href{https://shikitenkai.blogspot.com/2021/07/blog-post_19.html}{\frac{\partial v(x,y)}{\partial y}-i\frac{\partial u(x,y)}{\partial y}}
\\&=&\frac{x}{x^2+y^2}-i\frac{y}{x^2+y^2}
\\&=&\frac{x-iy}{x^2+y^2}
\\&=&\frac{\cancel{x-iy}}{(x+iy)\cancel{(x-iy)}}
\\&&\;\ldots\;(x+iy)(x-iy)=x^2\cancel{+ixy}\cancel{-ixy}-i^2y^2=x^2+y^2
\\&=&\frac{1}{x+iy}
\\&=&\frac{1}{z}\;\ldots\;z=x+iy
\end{eqnarray}$$