間違いしかありません.コメントにてご指摘いただければ幸いです(気が付いた点を特に断りなく頻繁に書き直していますのでご注意ください).

cot(z)をu(x,y)+iv(x,y)で表す

cot(z)=1tan(z)zC=cos(z)sin(z)=cos(x+iy)sin(x+iy)x,yR=cos(x)cos(iy)sin(x)sin(iy)sin(x)cos(iy)+cos(x)sin(iy)cos(α+β)=cos(α)cos(β)sin(α)sin(β)sin(α+β)=cos(α)sin(β)+sin(α)cos(β)=cos(x)cosh(y)sin(x)isinh(y)sin(x)cosh(y)+cos(x)isinh(y)cos(iy)=ei(iy)+ei(iy)2=ey+ey2=cosh(y)sin(iy)=ei(iy)ei(iy)2i=eyey2i=1i(eyey)2=ii1isinh(y)=isinh(y)=cos(x)cosh(y)isin(x)sinh(y)sin(x)cosh(y)+icos(x)sinh(y)sin(x)cosh(y)icos(x)sinh(y)sin(x)cosh(y)icos(x)sinh(y)=cos(x)cosh(y)sin(x)cosh(y)+cos(x)cosh(y)(icos(x)sinh(y))isin(x)sinh(y)sin(x)cosh(y)isin(x)sinh(y)(icos(x)sinh(y))sin2(x)cosh2(y)+cos2(x)sinh2(y)=cos(x)sin(x)cosh2(y)icos2(x)cosh(y)sinh(y)isin2(x)cosh(y)sinh(y)cos(x)sin(x)sinh(y)sin2(x)cosh2(y)+(1sin2(x))sinh2(y)=cos(x)sin(x)cosh2(y)icos2(x)cosh(y)sinh(y)isin2(x)cosh(y)sinh(y)cos(x)sin(x)sinh(y)sin2(x)cosh2(y)+sinh2(y)sin2(x)sinh2(y)=cos(x)sin(x)(cosh2(y)sinh(y))i{(cos2(x)+sin2(x))cosh(y)sinh(y)}sin2(x)(cosh2(y)sinh2(y))+sinh2(y)=cos(x)sin(x)icosh(y)sinh(y)sin2(x)+sinh2(y)=cos(x)sin(x)sin2(x)+sinh2(y)+icosh(y)sinh(y)sin2(x)+sinh2(y)=u(x,y)+iv(x,y) {u(x,y)=cos(x)sin(x)sin2(x)+sinh2(y)v(x,y)=cosh(y)sinh(y)sin2(x)+sinh2(y)

0 件のコメント:

コメントを投稿