$$\begin{eqnarray}
\cos\left(z\right)&=&2\;\cdots\;z\in\mathbb{C}
\end{eqnarray}$$
$$\begin{eqnarray} \cos\left(z\right)&=&\frac{ e^{iz}+e^{-iz} }{2} \\&=&\frac{ X+X^{-1} }{2}\;\cdots\;X=e^{iz} \\\frac{ X+X^{-1} }{2}&=&2 \\X+X^{-1}&=&2\cdot2 \\X+X^{-1}&=&4 \\X-4+X^{-1}&=&0 \\X\cdot\left(X-4-X^{-1}\right)&=&X\cdot0 \\X^2-4X+1&=&0 \\X&=&\frac{-(-4)\pm\sqrt{(-4)^2-4\cdot1\cdot 1}}{2\cdot1} \\&=&\frac{4\pm\sqrt{12}}{2} \\&=&\frac{4\pm2\sqrt{3}}{2} \\&=&2 \pm \sqrt{3} \\X=e^{iz}&=&2 \pm \sqrt{3} \\iz&=&\log{\left(2\pm \sqrt{3}\right)}+2\pi i n \;\cdots\; n \in \mathbb{Z} \\z&=&\frac{1}{i}\left\{\log{\left(2\pm \sqrt{3}\right)}+2\pi i n\right\} \\&=&\frac{i}{i}\frac{1}{i}\log{\left(2\pm \sqrt{3}\right)}+\frac{1}{\cancel{i}}2\pi \cancel{i} n \\&=&\frac{i}{-1}\log{\left(2\pm \sqrt{3}\right)}+2\pi n \\&=&-i\log{\left(2\pm \sqrt{3}\right)}+2\pi n \end{eqnarray}$$
$$\begin{eqnarray} \cos\left(z\right)&=&\frac{ e^{iz}+e^{-iz} }{2} \\&=&\frac{ X+X^{-1} }{2}\;\cdots\;X=e^{iz} \\\frac{ X+X^{-1} }{2}&=&2 \\X+X^{-1}&=&2\cdot2 \\X+X^{-1}&=&4 \\X-4+X^{-1}&=&0 \\X\cdot\left(X-4-X^{-1}\right)&=&X\cdot0 \\X^2-4X+1&=&0 \\X&=&\frac{-(-4)\pm\sqrt{(-4)^2-4\cdot1\cdot 1}}{2\cdot1} \\&=&\frac{4\pm\sqrt{12}}{2} \\&=&\frac{4\pm2\sqrt{3}}{2} \\&=&2 \pm \sqrt{3} \\X=e^{iz}&=&2 \pm \sqrt{3} \\iz&=&\log{\left(2\pm \sqrt{3}\right)}+2\pi i n \;\cdots\; n \in \mathbb{Z} \\z&=&\frac{1}{i}\left\{\log{\left(2\pm \sqrt{3}\right)}+2\pi i n\right\} \\&=&\frac{i}{i}\frac{1}{i}\log{\left(2\pm \sqrt{3}\right)}+\frac{1}{\cancel{i}}2\pi \cancel{i} n \\&=&\frac{i}{-1}\log{\left(2\pm \sqrt{3}\right)}+2\pi n \\&=&-i\log{\left(2\pm \sqrt{3}\right)}+2\pi n \end{eqnarray}$$
$$\begin{eqnarray}
\frac{
e^{iz}+e^{-iz}
}{2}
&=&
\frac{
e^{iz}+e^{i(-z)}
}{2}
\\&=&
\frac{
\left(\cos{\left(z\right)}+i\sin{\left(z\right)}\right)
+\left(\cos{\left(-z\right)}+i\sin{\left(-z\right)}\right)
}{2}
\\&=&
\frac{
\left(\cos{\left(z\right)}+i\sin{\left(z\right)}\right)
+\left(\cos{\left(z\right)}-i\sin{\left(z\right)}\right)
}{2}
\\&=&
\frac{
\cos{\left(z\right)}+\cancel{i\sin{\left(z\right)}}
+\cos{\left(z\right)}\cancel{-i\sin{\left(z\right)}}
}{2}
\\&=&
\frac{
\cancel{2}\cos{\left(z\right)}
}{\cancel{2}}
\\&=&\cos{\left(z\right)}
\end{eqnarray}$$