\(u(x,y)\)を\(x\)で偏微分する
$$\begin{eqnarray}
\frac{\partial u}{\partial x}
&=&\frac{\partial}{\partial x}\href{https://shikitenkai.blogspot.com/2021/07/cotzuxyivxy.html}{\frac{\cos{\left(x\right)}\sin{\left(x\right)}} {\sin^2{\left(x\right)}+\sinh^2{\left(y\right)}}}
\\&=&\frac{\sinh^2\left(y\right)(\cos^2\left(x\right)-\sin^2\left(x\right))-\sin^2\left(x\right)}{\left(\sin^2{\left(x\right)}+\sinh^2{\left(y\right)}\right)^2}
\\&=&\frac{\cos^2\left(x\right)\sinh^2\left(y\right)-\sinh^2\left(y\right)\sin^2\left(x\right)-\sin^2\left(x\right)}{\left(\sin^2{\left(x\right)}+\sinh^2{\left(y\right)}\right)^2}
\\&=&\frac{\cos^2\left(x\right)\sinh^2\left(y\right)-\sin^2\left(x\right)(1+\sinh^2\left(y\right))}{\left(\sin^2{\left(x\right)}+\sinh^2{\left(y\right)}\right)^2}
\\&=&\frac{\cos^2\left(x\right)\sinh^2\left(y\right)-\sin^2\left(x\right)\cosh^2\left(y\right)}{\left(\sin^2{\left(x\right)}+\sinh^2{\left(y\right)}\right)^2}
\end{eqnarray}$$
\(u(x,y)\)を\(y\)で偏微分する
$$\begin{eqnarray}
\frac{\partial u}{\partial y}
&=&\frac{\partial}{\partial y}\href{https://shikitenkai.blogspot.com/2021/07/cotzuxyivxy.html}{\frac{\cos{\left(x\right)}\sin{\left(x\right)}} {\sin^2{\left(x\right)}+\sinh^2{\left(y\right)}}}
\\&=&-\frac{2\sin\left(x\right)\cos\left(x\right)\sinh\left(y\right)\cosh\left(y\right)}{\left(\sin^2{\left(x\right)}+\sinh^2{\left(y\right)}\right)^2}
\end{eqnarray}$$
\(v(x,y)\)を\(x\)で偏微分する
$$\begin{eqnarray}
\frac{\partial v}{\partial x}
&=&\frac{\partial}{\partial x}\href{https://shikitenkai.blogspot.com/2021/07/cotzuxyivxy.html}{\frac{-\cosh{\left(y\right)}\sinh{\left(y\right)}} {\sin^2{\left(x\right)}+\sinh^2{\left(y\right)}}}
\\&=&\frac{2\sin\left(x\right)\cos\left(x\right)\sinh\left(y\right)\cosh\left(y\right)}{\left(\sin^2{\left(x\right)}+\sinh^2{\left(y\right)}\right)^2}
\end{eqnarray}$$
\(v(x,y)\)を\(y\)で偏微分する
$$\begin{eqnarray}
\frac{\partial v}{\partial y}
&=&\frac{\partial}{\partial y}\href{https://shikitenkai.blogspot.com/2021/07/cotzuxyivxy.html}{\frac{-\cosh{\left(y\right)}\sinh{\left(y\right)}} {\sin^2{\left(x\right)}+\sinh^2{\left(y\right)}}}
\\&=&\frac{\cosh^2\left(y\right)(\sinh^2\left(y\right)-\sin^2\left(x\right))-\sinh^2\left(y\right)(\sinh^2\left(y\right)+\sin^2\left(x\right))}{\left(\sin^2{\left(x\right)}+\sinh^2{\left(y\right)}\right)^2}
\\&=&\frac{\cosh^2\left(y\right)\sinh^2\left(y\right)-\cosh^2\left(y\right)\sin^2\left(x\right)-\sinh^2\left(y\right)\sinh^2\left(y\right)-\sinh^2\left(y\right)\sin^2\left(x\right)}{\left(\sin^2{\left(x\right)}+\sinh^2{\left(y\right)}\right)^2}
\\&=&\frac{\sinh^2\left(y\right)(\cosh^2\left(y\right)-\sinh^2\left(y\right))-\cosh^2\left(y\right)\sin^2\left(x\right)-\sinh^2\left(y\right)\sin^2\left(x\right)}{\left(\sin^2{\left(x\right)}+\sinh^2{\left(y\right)}\right)^2}
\\&=&\frac{\sinh^2\left(y\right)-\cosh^2\left(y\right)\sin^2\left(x\right)-\sinh^2\left(y\right)\sin^2\left(x\right)}{\left(\sin^2{\left(x\right)}+\sinh^2{\left(y\right)}\right)^2}
\\&=&\frac{\sinh^2\left(y\right)(1-\sin^2\left(x\right))-\cosh^2\left(y\right)\sin^2\left(x\right)}{\left(\sin^2{\left(x\right)}+\sinh^2{\left(y\right)}\right)^2}
\\&=&\frac{\cos^2\left(x\right)\sinh^2\left(y\right)-\sin^2\left(x\right)\cosh^2\left(y\right)}{\left(\sin^2{\left(x\right)}+\sinh^2{\left(y\right)}\right)^2}
\end{eqnarray}$$
コーシー・リーマンの関係式を満たす
$$\href{https://shikitenkai.blogspot.com/2021/07/blog-post_19.html}{
\left\{
\begin{eqnarray}
\frac{\partial u}{\partial x}&=&\frac{\partial v}{\partial y}
\\\frac{\partial u}{\partial y}&=&-\frac{\partial v}{\partial x}
\end{eqnarray}
\right.
}$$
実軸(x)方向の微分
$$\begin{eqnarray}
\frac{\mathrm{d}}{\mathrm{d} z}\cot{}&=&\href{https://shikitenkai.blogspot.com/2021/07/blog-post_19.html}{\frac{\partial u(x,y)}{\partial x}+i\frac{\partial v(x,y)}{\partial x}}
\\&=&\frac{\cos^2\left(x\right)\sinh^2\left(y\right)-\sin^2\left(x\right)\cosh^2\left(y\right)}{\left(\sin^2{\left(x\right)}+\sinh^2{\left(y\right)}\right)^2}
+i\frac{2\sin\left(x\right)\cos\left(x\right)\sinh\left(y\right)\cosh\left(y\right)}{\left(\sin^2{\left(x\right)}+\sinh^2{\left(y\right)}\right)^2}
\\&=&\frac{\left(\cos\left(x\right)\sinh\left(y\right)+i\sin\left(x\right)\cosh\left(y\right)\right)^2}{\left(\sin^2{\left(x\right)}+\sinh^2{\left(y\right)}\right)^2}
\\&=&\frac{\left(\cos\left(x\right)\sinh\left(y\right)+i\sin\left(x\right)\cosh\left(y\right)\right)^2}{\left(\sin^2{\left(x\right)}+\sinh^2{\left(y\right)}\right)^2}
\\&=&\frac{\left(\cos\left(x\right)\sinh\left(y\right)+i\sin\left(x\right)\cosh\left(y\right)\right)^2}{\left(\sin^2{\left(x\right)}+\sinh^2{\left(y\right)}\right)^2}
\\&=&\frac{\left(\cos\left(x\right)\frac{1}{i}\sin\left(iy\right)+i\sin\left(x\right)\cos\left(iy\right)\right)^2}
{\left(\sin^2{\left(x\right)}+\left(\frac{1}{i}\sin\left(iy\right)\right)^2\right)^2}
\;\ldots\;\cos\left(iy\right)=i\cosh\left(y\right),\;\sin\left(iy\right)=i\sinh\left(y\right),\;\sinh\left(y\right)=\frac{1}{i}\sin\left(iy\right)
\\&=&\frac{i^2}{i^2}\frac{\left(\cos\left(x\right)\frac{1}{i}\sin\left(iy\right)+i\sin\left(x\right)\cos\left(iy\right)\right)^2}
{\left(\sin^2{\left(x\right)}+\left(\frac{1}{i}\right)^2\left(\sin\left(iy\right)\right)^2\right)^2}
\\&=&\frac{1}{i^2}\frac{\left(i\left(\cos\left(x\right)\frac{1}{i}\sin\left(iy\right)+i\sin\left(x\right)\cos\left(iy\right)\right)\right)^2}
{\left(\sin^2{\left(x\right)}-\sin^2\left(iy\right)\right)^2}
\\&=&\frac{1}{-1}\frac{\left(\cos\left(x\right)\sin\left(iy\right)-\sin\left(x\right)\cos\left(iy\right)\right)^2}
{\left(\sin^2{\left(x\right)}-\sin^2\left(iy\right)\right)^2}
\\&=&-\frac{\left(-\left(-\cos\left(x\right)\sin\left(iy\right)+\sin\left(x\right)\cos\left(iy\right)\right)\right)^2}
{\left(\sin^2{\left(x\right)}-\sin^2\left(iy\right)\right)^2}
\\&=&-\frac{\left(-\sin(x-iy)\right)^2}
{\left(\sin{\left(x+iy\right)}\sin{\left(x-iy\right)}\right)^2}
\\&&\;\ldots\;\sin^2{\left(x\right)}-\sin^2\left(iy\right)
\\&&\;\ldots\;=\sin^2{\left(x\right)}-\sin^2\left(iy\right)\color{red}{-\sin^2{\left(x\right)}\sin^2\left(iy\right)+\sin^2{\left(x\right)}\sin^2\left(iy\right)}
\\&&\;\ldots\;=\sin^2{\left(x\right)}\left(1-\sin^2\left(iy\right)\right)-\sin^2{\left(iy\right)}\left(1-\sin^2\left(x\right)\right)
\\&&\;\ldots\;=\sin^2{\left(x\right)}\cos^2\left(iy\right)-\sin^2{\left(iy\right)}\cos^2{\left(x\right)}
\\&&\;\ldots\;=\left\{\sin{\left(x\right)}\cos\left(iy\right)+\sin{\left(iy\right)}\cos{\left(x\right)}\right\}
\left\{\sin{\left(x\right)}\cos\left(iy\right)-\sin{\left(iy\right)}\cos{\left(x\right)}\right\}
\\&&\;\ldots\;=\sin{\left(x+iy\right)}\sin{\left(x-iy\right)}
\\&=&-\frac{\cancel{\sin^2(x-iy)}}
{\sin^2{\left(x+iy\right)}\cancel{\sin^2{\left(x-iy\right)}}}
\\&=&\frac{-1}{\sin^2{\left(x+iy\right)}}
\\&=&\frac{-1}{\sin^2{\left(z\right)}}
\end{eqnarray}$$
0 件のコメント:
コメントを投稿