\(\sin{\left(z\right)}\)の微分
\(u+iv\)で表す
$$\begin{eqnarray}
\sin{\left(z\right)}
&=&\sin{\left(x\right)}\cos{\left(iy\right)}+\cos{\left(x\right)}\sin{\left(iy\right)}
\\&=&\sin{\left(x\right)}\cosh{\left(y\right)}+\cos{\left(x\right)}i\sinh{\left(y\right)}
\\&&\;\ldots\;\href{https://shikitenkai.blogspot.com/2021/07/cosi-x-sini-x-cos-sin.html}{\cos\left(iy\right)=i\cosh\left(y\right),\;\sin\left(iy\right)=i\sinh\left(y\right)}
\\&=&\sin{\left(x\right)}\cosh{\left(y\right)}+i\cos{\left(x\right)}\sinh{\left(y\right)}
\\&=&u(x,y)+iv(x,y)
\end{eqnarray}$$
$$\left\{\begin{eqnarray}
u(x,y)&=&\sin{\left(x\right)}\cosh{\left(y\right)}
\\v(x,y)&=&\cos{\left(x\right)}\sinh{\left(y\right)}
\end{eqnarray}\;\ldots\;x,y\in\mathbb{R}\right.$$
\(u,v\)を\(x,y\)で偏微分する
$$\begin{eqnarray}
\frac{\partial u(x,y)}{\partial x}
&=&\frac{\partial}{\partial x}\sin{\left(x\right)}\cosh{\left(y\right)}
\;\ldots\;x,y\in\mathbb{R}
\\&=&\cosh{\left(y\right)}\frac{\partial}{\partial x}\sin{\left(x\right)}
\\&=&\cosh{\left(y\right)}\cos{\left(x\right)}
\;\ldots\;\frac{\mathrm{d}}{\mathrm{d}\theta}\sin{\left(\theta\right)}=\cos{\left(\theta\right)}
\\&=&\cos{\left(x\right)}\cosh{\left(y\right)}
\end{eqnarray}$$
$$\begin{eqnarray}
\frac{\partial u(x,y)}{\partial y}
&=&\frac{\partial}{\partial y}\sin{\left(x\right)}\cosh{\left(y\right)}
\;\ldots\;x,y\in\mathbb{R}
\\&=&\sin{\left(x\right)}\frac{\partial}{\partial y}\cosh{\left(y\right)}
\\&=&\sin{\left(x\right)}\sinh{\left(y\right)}
\;\ldots\;\frac{\mathrm{d}}{\mathrm{d}\theta}\cosh{\left(\theta\right)}=\sinh{\left(\theta\right)}
\end{eqnarray}$$
$$\begin{eqnarray}
\frac{\partial v(x,y)}{\partial x}
&=&\frac{\partial}{\partial x}\cos{\left(x\right)}\sinh{\left(y\right)}
\;\ldots\;x,y\in\mathbb{R}
\\&=&\sinh{\left(y\right)}\frac{\partial}{\partial x}\cos{\left(x\right)}
\\&=&\sinh{\left(y\right)}\left(-\sin{\left(x\right)}\right)
\;\ldots\;\frac{\mathrm{d}}{\mathrm{d}\theta}\cos{\left(\theta\right)}=-\sin{\left(\theta\right)}
\\&=&-\sin{\left(x\right)}\sinh{\left(y\right)}
\end{eqnarray}$$
$$\begin{eqnarray}
\frac{\partial v(x,y)}{\partial y}
&=&\frac{\partial}{\partial y}\cos{\left(x\right)}\sinh{\left(y\right)}
\;\ldots\;x,y\in\mathbb{R}
\\&=&\cos{\left(x\right)}\frac{\partial}{\partial y}\sinh{\left(y\right)}
\\&=&\cos{\left(x\right)}\cosh{\left(y\right)}
\;\ldots\;\frac{\mathrm{d}}{\mathrm{d}\theta}\sinh{\left(\theta\right)}=\cosh{\left(\theta\right)}
\end{eqnarray}$$
コーシー・リーマンの関係式を満たす
$$\href{https://shikitenkai.blogspot.com/2021/07/blog-post_19.html}{\left\{
\begin{eqnarray}
\frac{\partial u}{\partial x}&=&\frac{\partial v}{\partial y}
\\\frac{\partial v}{\partial x}&=&-\frac{\partial u}{\partial y}
\end{eqnarray}
\right.}$$
実軸方向での微分
$$\begin{eqnarray}
\frac{\mathrm{d}}{\mathrm{d}z}\sin{\left(z\right)}
&=&\href{https://shikitenkai.blogspot.com/2021/07/blog-post_19.html}{\frac{\partial u(x,y)}{\partial x}+i\frac{\partial v(x,y)}{\partial x}}
\\&=&\cos{\left(x\right)}\cosh{\left(y\right)}+i\left(-\sin{\left(x\right)}\sinh{\left(y\right)}\right)
\\&=&\cos{\left(x\right)}\cosh{\left(y\right)}-i\sin{\left(x\right)}\sinh{\left(y\right)}
\\&=&\cos{\left(x\right)}\cos{\left(iy\right)}-\sin{\left(x\right)}\sin{\left(iy\right)}
\\&&\;\ldots\;\href{https://shikitenkai.blogspot.com/2021/07/cosi-x-sini-x-cos-sin.html}{\cos\left(iy\right)=\cosh\left(y\right),\;\sin\left(iy\right)=i\sinh\left(y\right)}
\\&=&\cos{\left(x+iy\right)}
\\&=&\cos{\left(z\right)}
\end{eqnarray}$$
0 件のコメント:
コメントを投稿