間違いしかありません.コメントにてご指摘いただければ幸いです(気が付いた点を特に断りなく頻繁に書き直していますのでご注意ください).

sin(z)の微分

sin(z)の微分

u+ivで表す

sin(z)=sin(x)cos(iy)+cos(x)sin(iy)=sin(x)cosh(y)+cos(x)isinh(y)cos(iy)=icosh(y),sin(iy)=isinh(y)=sin(x)cosh(y)+icos(x)sinh(y)=u(x,y)+iv(x,y) {u(x,y)=sin(x)cosh(y)v(x,y)=cos(x)sinh(y)x,yR

u,vx,yで偏微分する

u(x,y)x=xsin(x)cosh(y)x,yR=cosh(y)xsin(x)=cosh(y)cos(x)ddθsin(θ)=cos(θ)=cos(x)cosh(y) u(x,y)y=ysin(x)cosh(y)x,yR=sin(x)ycosh(y)=sin(x)sinh(y)ddθcosh(θ)=sinh(θ) v(x,y)x=xcos(x)sinh(y)x,yR=sinh(y)xcos(x)=sinh(y)(sin(x))ddθcos(θ)=sin(θ)=sin(x)sinh(y) v(x,y)y=ycos(x)sinh(y)x,yR=cos(x)ysinh(y)=cos(x)cosh(y)ddθsinh(θ)=cosh(θ)

コーシー・リーマンの関係式を満たす

{ux=vyvx=uy

実軸方向での微分

ddzsin(z)=u(x,y)x+iv(x,y)x=cos(x)cosh(y)+i(sin(x)sinh(y))=cos(x)cosh(y)isin(x)sinh(y)=cos(x)cos(iy)sin(x)sin(iy)cos(iy)=cosh(y),sin(iy)=isinh(y)=cos(x+iy)=cos(z)

0 件のコメント:

コメントを投稿