間違いしかありません.コメントにてご指摘いただければ幸いです(気が付いた点を特に断りなく頻繁に書き直していますのでご注意ください).

log(z)の微分

log(z)の微分

u+ivで表す

log(z)=log(x+iy)z=x+iy,zC,x,yR=log(|z|eiarg(z))z=|z|eiarg(z),|z|=|x+iy|=x2+y2,arg(z)()arg(z)=Arg(z)+2nπ,nZπ<Arg(z)π,Arg(z)=log(|z|)+log(eiarg(z))=log(|z|)+log(ei(Arg(z)+2nπ))=log(|z|)+i(Arg(z)+2nπ)=u(x,y)+iv(x,y)v(x,y)() {u(x,y)=log(x2+y2)v(x,y)=Arg(z)+2nπ={arctan(yx)+2nπ(x>0)arctan(yx)+π+2nπ(x<0y0)arctan(yx)π+2nπ(x<0y<0)π2+2nπ(x=0y>0)π2+2nπ(x=0y<0)identerminate(x=0y=0)x,yR,nZ

u,vx,yで偏微分する

u(x,y)x=xlog(x2+y2)=flog(f)fxf=x2+y2=(x2+y2)12,fR=flog(f)fggxg=x2+y2,gR=1f12(g)122x=1x2+y212x2+y22x=xx2+y2 u(x,y)y=ylog(x2+y2)=flog(f)fyf=x2+y2=(x2+y2)12,fR=flog(f)fggyg=x2+y2,gR=1f12(g)122y=1x2+y212x2+y22y=yx2+y2 v(x,y)x=xArg(x+iy)+2nπ={x(arctan(yx)+2nπ)(x>0)x(arctan(yx)+π+2nπ)(x<0y0)x(arctan(yx)π+2nπ)(x<0y<0)x(π2+2nπ)(x=0y>0)x(π2+2nπ)(x=0y<0)identerminate(x=0y=0)={yx2+y2(x>0)yx2+y2(x<0y0)yx2+y2(x<0y<0)0(x=0y>0)0(x=0y<0)identerminate(x=0y=0) v(x,y)y=yArg(x+iy)+2nπ={y(arctan(yx)+2nπ)(x>0)y(arctan(yx)+π+2nπ)(x<0y0)y(arctan(yx)π+2nπ)(x<0y<0)y(π2+2nπ)(x=0y>0)y(π2+2nπ)(x=0y<0)identerminate(x=0y=0)={xx2+y2(x>0)xx2+y2(x<0y0)xx2+y2(x<0y<0)0(x=0y>0)0(x=0y<0)identerminate(x=0y=0)

コーシー・リーマンの関係式を満たす

{ux=vyvx=uy

実軸方向での微分

ddzlog(z)=u(x,y)x+iv(x,y)x=xx2+y2+iyx2+y2=xiyx2+y2=xiy(x+iy)(xiy)(x+iy)(xiy)=x2+ixyixyi2y2=x2+y2=1x+iy=1zz=x+iy

虚軸方向での微分

ddzlog(z)=v(x,y)yiu(x,y)y=xx2+y2iyx2+y2=xiyx2+y2=xiy(x+iy)(xiy)(x+iy)(xiy)=x2+ixyixyi2y2=x2+y2=1x+iy=1zz=x+iy

0 件のコメント:

コメントを投稿