\(cot\left(az\right)\)の微分
\begin{eqnarray}
\frac{\mathrm{d}}{\mathrm{d}z}\cot{\left(az\right)}
&=&\frac{\mathrm{d}}{\mathrm{d}w}\cot{\left(w\right)}\frac{\mathrm{d}w}{\mathrm{d}z}
\\&&\;\ldots\;a\in\mathbb{R},\;z\in\mathbb{C}
\\&&\;\ldots\;\href{https://shikitenkai.blogspot.com/2021/07/wz.html}{w=az,\;\frac{\mathrm{d}w}{\mathrm{d}z}=a}
\\&=&\frac{-1}{\sin^2{\left(az\right)}}\cdot a
\;\ldots\;\href{https://shikitenkai.blogspot.com/2021/07/cotz.html}{\frac{\mathrm{d}}{\mathrm{d}w}\cot{\left(w\right)}=\frac{-1}{\sin^2{\left(w\right)}}}
\\&=&-\frac{a}{\sin^2{\left(az\right)}}
\end{eqnarray}
0 件のコメント:
コメントを投稿