平方数の逆数全ての和はいくつかという問題(バーゼル問題)
$$\begin{eqnarray}
\sum_{k=1}^{\infty}\frac{1}{k^2}&=&\frac{\pi}{6}
\end{eqnarray}$$
ディガンマ凾数の相反公式
$$\begin{eqnarray}
\psi\left(1-z\right)-\psi\left(z\right)
&=&\href{https://shikitenkai.blogspot.com/2021/07/blog-post_22.html}{\pi \cot{\left(\pi z\right)}}
\end{eqnarray}$$
その微分
$$\begin{eqnarray}
\frac{\partial}{\partial z}\pi \cot{\left(\pi z\right)}
&=& \pi\frac{\partial}{\partial z} \cot{\left(\pi z\right)}
\\&=&\pi\left\{-\frac{\pi}{\sin^2{\left(\pi z\right)}}\right\}
\;\ldots\;\href{https://shikitenkai.blogspot.com/2021/07/cotaz.html}{\frac{\partial}{\partial w} \cot{\left(a w\right)}=-\frac{a}{\sin^2{\left(aw\right)}}}
\\&=&-\frac{\pi^2}{\sin^2{\left(\pi z\right)}}
\\&=&f(z)
\end{eqnarray}$$
\(f(z)\)の\(z=\frac{1}{3}\)の値
$$\begin{eqnarray}
-\frac{\pi^2}{\sin^2{\left(\pi \frac{1}{3}\right)}}
&=&-\frac{\pi^2}{\left(\frac{\sqrt{3}}{2}\right)^2}
\;\ldots\;\sin{\left(\frac{\pi}{3}\right)}=\frac{\sqrt{3}}{2}
\\&=&-\frac{\pi^2}{\frac{3}{4}}
\\&=&\frac{-4\pi^2}{3}
\end{eqnarray}$$
ディガンマ凾数の相反公式の積分表示
$$\begin{eqnarray}
\psi\left(1-z\right)-\psi\left(z\right)
&=&\int_0^1\frac{u^{(z)-1}-u^{(1-z)-1}}{1-u}\mathrm{d}u
\;\ldots\;\href{https://shikitenkai.blogspot.com/2021/07/blog-post_13.html}{\psi\left(y\right)-\psi\left(x\right)=\int_{0}^1 \frac{u^{x-1}-u^{y-1}}{1-u}\mathrm{d}u}
\\&=&\int_0^1\frac{u^{z-1}-u^{-z}}{1-u}\mathrm{d}u
\\&=&\int_\infty^0\frac{(e^{-x})^{z-1} - (e^{-x})^{-z}}{ 1-e^{-x} } (-e^{-x})\mathrm{d}x
\\&&\;\ldots\;u=e^{-x},\;\frac{\mathrm{d}u}{\mathrm{d}x}=-e^{-x}
\\&&\;\ldots\;u=e^{-x},\;u:0\rightarrow1, x:\infty\rightarrow0
\\&=&\int_0^\infty\frac{e^{-x}\left\{e^{-x(z-1)} - e^{-x(-z)}\right\}}{ 1-e^{-x} } \mathrm{d}x
\\&=&\int_0^\infty\frac{e^{-x}e^{-xz+x} - e^{-x}e^{xz}}{ 1-e^{-x} } \mathrm{d}x
\\&=&\int_0^\infty\frac{e^{-x-xz+x} - e^{-x+xz}}{ 1-e^{-x} } \mathrm{d}x
\\&=&\int_0^\infty\frac{e^{-xz} - e^{-x(1-z)}}{ 1-e^{-x} } \mathrm{d}x
\end{eqnarray}$$
その微分
$$\begin{eqnarray}
\frac{\partial}{\partial z}\int_0^\infty\frac{e^{-xz} - e^{-x(1-z)}}{ 1-e^{-x} } \mathrm{d}x
&=&\int_0^\infty\frac{1}{ 1-e^{-x} } \left(\frac{\partial}{\partial z}e^{-xz} - \frac{\partial}{\partial z}e^{-x(1-z)}\right) \mathrm{d}x
\\&=&\int_0^\infty\frac{1}{ 1-e^{-x} } \left(-xe^{-xz} - (-x)(-1)e^{-x(1-z)}\right) \mathrm{d}x
\\&=&\int_0^\infty\frac{1}{ 1-e^{-x} } \left(-xe^{-xz} - xe^{-x(1-z)}\right) \mathrm{d}x
\\&=&\int_0^\infty\frac{1}{ 1-e^{-x} } \left\{-x\left(e^{-xz} + e^{-x(1-z)}\right)\right\} \mathrm{d}x
\\&=&-\int_0^\infty\frac{1}{ 1-e^{-x} } \left\{x\left(e^{-xz} + e^{-x(1-z)}\right)\right\} \mathrm{d}x
\\&=&g(z)
\end{eqnarray}$$
\(g(z)\)の\(z=\frac{1}{3}\)の値
$$\begin{eqnarray}
g\left(\frac{1}{3}\right)
&=&-\int_0^\infty\frac{1}{ 1-e^{-x} } \left\{x\left(e^{-x\frac{1}{3}} + e^{-x(1-\frac{1}{3})}\right)\right\} \mathrm{d}x
\\&=&-\int_0^\infty\frac{1}{ 1-e^{-x} } \left\{x\left(e^{-\frac{x}{3}} + e^{\frac{-2x}{3}}\right)\right\} \mathrm{d}x
\\&=&-\int_0^\infty
\frac{e^{x}}{e^{x}}\frac{1}{ 1-e^{-x} } \left\{
x\left(
e^{-\frac{x}{3}}
+ e^{\frac{-2x}{3}}
\right)
\right\} \mathrm{d}x
\\&=&-\int_0^\infty
\frac{e^{x}}{ e^{x}\left(1-e^{-x}\right) } \left\{
x\left(
e^{-\frac{x}{3}}
+ e^{\frac{-2x}{3}}
\right)
\right\} \mathrm{d}x
\\&=&-\int_0^\infty
\frac{e^{x}}{ e^{x}-e^{x}e^{-x} } \left\{
x\left(
e^{-\frac{x}{3}}
+ e^{\frac{-2x}{3}}
\right)
\right\} \mathrm{d}x
\\&=&-\int_0^\infty
\frac{e^{x}}{ e^{x}-1 } \left\{
x\left(
e^{-\frac{x}{3}}
+ e^{\frac{-2x}{3}}
\right)
\right\} \mathrm{d}x
\\&=&-\int_0^\infty
\left(\sum_{k=0}^{\infty}e^{-kx}\right) \left\{
x\left(
e^{-\frac{x}{3}}
+ e^{\frac{-2x}{3}}
\right)
\right\} \mathrm{d}x
\;\ldots\;\sum_{k=0}^{\infty}e^{-kx}=\frac{e^x}{e^x-1}
,\;\href{https://shikitenkai.blogspot.com/2021/07/a-kx.html}{\sum_{k=0}^{\infty}a^{-kx}=\frac{a^x}{a^x-1}}
\\&=&-\sum_{k=0}^{\infty}\int_0^\infty
e^{-kx} \left\{
x\left(
e^{-\frac{x}{3}}
+ e^{\frac{-2x}{3}}
\right)
\right\} \mathrm{d}x
\\&=&-\sum_{k=0}^{\infty}\int_0^\infty
x\left(
e^{-kx}e^{-\frac{x}{3}}
+ e^{-kx}e^{\frac{-2x}{3}}
\right)
\mathrm{d}x
\\&=&-\sum_{k=0}^{\infty}\int_0^\infty
x\left(
e^{-x(k+\frac{1}{3})}
+ e^{-x(k+\frac{2}{3})}
\right)
\mathrm{d}x
\\&=&-\sum_{k=0}^{\infty}
\left(
\int_0^\infty xe^{-x(k+\frac{1}{3})} \mathrm{d}x
+ \int_0^\infty xe^{-x(k+\frac{2}{3})} \mathrm{d}x
\right)
\\&=&-\sum_{k=0}^{\infty}
\left(
\frac{1}{\left(k+\frac{1}{3}\right)^2}
+ \frac{1}{\left(k+\frac{2}{3}\right)^2}
\right)
\;\ldots\;\href{https://shikitenkai.blogspot.com/2021/07/xe-ax0.html}{\int_0^\infty xe^{-ax} \mathrm{d}x=\frac{1}{a^2}}
\\&=&-\sum_{k=0}^{\infty}
\left(
\frac{1}{\left(\frac{3k+1}{3}\right)^2}
+ \frac{1}{\left(\frac{3k+2}{3}\right)^2}
\right)
\\&=&-\sum_{k=0}^{\infty}
\left(
\frac{3^2}{\left(3k+1\right)^2}
+ \frac{3^2}{\left(3k+2\right)^2}
\right)
\\&=&-\sum_{k=0}^{\infty}
\left(
\frac{3^2}{\left(3k+1\right)^2}
+ \frac{3^2}{\left(3k+2\right)^2}
\color{red}{+ \frac{3^2}{\left(3k+3\right)^2}
- \frac{3^2}{\left(3k+3\right)^2}}
\color{black}{}
\right)
\\&=&-\sum_{k=0}^{\infty}
\left(
\frac{3^2}{\left(3k+1\right)^2}
+ \frac{3^2}{\left(3k+2\right)^2}
+ \frac{3^2}{\left(3k+3\right)^2}
\right)
-
\sum_{k=0}^{\infty}
\left(
- \frac{3^2}{\left(3k+3\right)^2}
\right)
\\&=&-\sum_{k=0}^{\infty}
\left(
\frac{3^2}{\left(3k+1\right)^2}
+ \frac{3^2}{\left(3k+2\right)^2}
+ \frac{3^2}{\left(3k+3\right)^2}
\right)
+
\sum_{k=0}^{\infty}
\frac{3^2}{\left(3k+3\right)^2}
\\&=&-\sum_{k=0}^{\infty}
\left(
\frac{3^2}{\left(3k+1\right)^2}
+ \frac{3^2}{\left(3k+2\right)^2}
+ \frac{3^2}{\left(3k+3\right)^2}
\right)
+\sum_{k=0}^{\infty}\frac{3^2}{3^2\left(k+1\right)^2}
\\&=&-\sum_{k=0}^{\infty}
\left(
\frac{3^2}{\left(3k+1\right)^2}
+ \frac{3^2}{\left(3k+2\right)^2}
+ \frac{3^2}{\left(3k+3\right)^2}
\right)
+\sum_{k=0}^{\infty}\frac{1}{\left(k+1\right)^2}
\\&=&-\sum_{k=0}^{\infty}
\left(
\frac{3^2}{\left(3k+1\right)^2}
+ \frac{3^2}{\left(3k+2\right)^2}
+ \frac{3^2}{\left(3k+3\right)^2}
\right)
+\sum_{k=1}^{\infty}\frac{1}{k^2}
\\&&\;\ldots\;\sum_{k=0}^{\infty}\frac{1}{\left(k+1\right)^2}
=\frac{1}{\left(0+1\right)^2}+\frac{1}{\left(1+1\right)^2}+\frac{1}{\left(2+1\right)^2}+\cdots
=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\cdots
=\sum_{k=1}^{\infty}\frac{1}{k^2}
\\&=&-3^2\sum_{k=0}^{\infty}
\left(
\frac{1}{\left(3k+1\right)^2}
+ \frac{1}{\left(3k+2\right)^2}
+ \frac{1}{\left(3k+3\right)^2}
\right)
+\sum_{k=1}^{\infty}\frac{1}{k^2}
\\&=&-9\sum_{k=1}^{\infty}\frac{1}{k^2}
+\sum_{k=1}^{\infty}\frac{1}{k^2}
\\&&\;\ldots\;
\sum_{k=0}^{\infty}
\left(
\frac{1}{\left(3k+1\right)^2}
+ \frac{1}{\left(3k+2\right)^2}
+ \frac{1}{\left(3k+3\right)^2}
\right)
=
\left(
\frac{1}{\left(3\cdot0+1\right)^2}
+ \frac{1}{\left(3\cdot0+2\right)^2}
+ \frac{1}{\left(3\cdot0+3\right)^2}
\right)
+ \left(
\frac{1}{\left(3\cdot1+1\right)^2}
+ \frac{1}{\left(3\cdot1+2\right)^2}
+ \frac{1}{\left(3\cdot1+3\right)^2}
\right)
+\cdots
= \left(
\frac{1}{1^2}
+ \frac{1}{2^2}
+ \frac{1}{3^2}
\right)
+ \left(
\frac{1}{4^2}
+ \frac{1}{5^2}
+ \frac{1}{6^2}
\right)
+\cdots
=\sum_{k=1}^{\infty}\frac{1}{k^2}
\\&=&-8\sum_{k=1}^{\infty}\frac{1}{k^2}
\end{eqnarray}$$
fとgが等しいことを利用
$$\begin{eqnarray}
g\left(\frac{1}{3}\right)
&=&f\left(\frac{1}{3}\right)
\\-8\sum_{k=1}^{\infty}\frac{1}{k^2}
&=&\frac{-4\pi^2}{3}
\\\sum_{k=1}^{\infty}\frac{1}{k^2}
&=&\frac{-1}{8}\frac{-4\pi^2}{3}
\\&=&\frac{\pi^2}{6}
\end{eqnarray}$$
0 件のコメント:
コメントを投稿