ガンマ凾数の極限表示
ガンマ凾数の定義と極限表示
$$\begin{eqnarray}
\Gamma\left(z\right)
&=&\int_0^\infty t^{z-1}e^{-t}\mathrm{d}t\;\;\;\left(\mathrm{Re}\left(z\right)\gt0\right)\;\ldots\;定義
\\&=&\lim_{n\rightarrow\infty}\frac{n^z n!}{\prod_{k=0}^n\left(z+k\right)}\;\ldots\;極限表示
\end{eqnarray}$$
\(G_n\)の導入
$$\begin{eqnarray}
G_n\left(z\right)&=&\int_0^n t^{z-1}\left(1-\frac{t}{n}\right)^{n}\mathrm{d}t
\end{eqnarray}$$
\(G_n\)の総乗表示
$$\begin{eqnarray}
G_n\left(z\right)&=&\int_0^n t^{z-1}\left(1-\frac{t}{n}\right)^{n}\mathrm{d}t
\\&=&\int_0^1 \left(nu\right)^{z-1}\left(1-\frac{nu}{n}\right)^{n}n\mathrm{d}u
\\&&\;\ldots\;t=nu,\;u=\frac{t}{n},\;\frac{\mathrm{d}t}{\mathrm{d}u}=n,\;\mathrm{d}t=n\mathrm{d}u
\\&&\;\ldots\;t:0\rightarrow n,\;u:0\rightarrow1
\\&=&n^z\int_0^1 u^{z-1}\left(1-u\right)^{n}\mathrm{d}u
\\&=&n^z\cdot g_n\left(z\right)\;\ldots\;g_n\left(z\right)=\int_0^1 u^{z-1}\left(1-u\right)^{n}\mathrm{d}u
\\g_0\left(z\right)&=&\int_0^1 u^{z-1}\left(1-u\right)^{0}\mathrm{d}u
\\&=&\int_0^1 u^{z-1}\mathrm{d}u
\\&=&\left[\frac{u^z}{z}\right]_{u=0}^1
\\&=&\frac{1}{z}
\\g_n\left(z\right)&=&\int_0^1 u^{z-1}\left(1-u\right)^{n}\mathrm{d}u
\\&=&\int_0^1 \left(\frac{u^{z}}{z}\right)^\prime\left(1-u\right)^{n}\mathrm{d}u
\;\ldots\;\frac{\mathrm{d}}{\mathrm{d}u}\frac{u^{z}}{z}=\frac{1}{z}zu^{z-1}=u^{z-1}
\\&=&\left[\frac{u^z}{z}\left(1-u\right)^{n}\right]_{u=0}^1
-\int_0^1 \frac{u^{z}}{z}\left(\left(1-u\right)^{n}\right)^\prime\mathrm{d}u
\\&=&\left[\frac{1^z}{z}\left(1-1\right)^{n}-\frac{0^z}{z}\left(1-0\right)^{n}\right]
-\int_0^1 \frac{u^{z}}{z}\left(n\left(1-u\right)^{n-1}(-1)\right)\mathrm{d}u
\\&=&0+\frac{n}{z}\int_0^1 u^{z}\left(1-u\right)^{n-1}\mathrm{d}u
\\&=&\frac{n}{z}g_{n-1}\left(z+1\right)
\\&=&\frac{n}{z}\frac{n-1}{z+1}g_{n-2}\left(z+2\right)
\\&=&\frac{n}{z}\frac{n-1}{z+1}\frac{n-2}{z+2}g_{n-3}\left(z+3\right)
\\&=&\frac{n}{z}\frac{n-1}{z+1}\frac{n-2}{z+2}\ldots\frac{n-(n-1)}{z+(n-1)}g_{n-n}\left(z+n\right)
\\&=&\frac{n}{z}\frac{n-1}{z+1}\frac{n-2}{z+2}\ldots\frac{1}{z+(n-1)}g_{0}\left(z+n\right)
\\&=&\frac{n}{z}\frac{n-1}{z+1}\frac{n-2}{z+2}\ldots\frac{1}{z+(n-1)}\frac{1}{z+n}
\\&=&\frac{n!}{\prod_{k=0}^n (z+k)}
\\G_n\left(z\right)&=&n^z\cdot g_n\left(z\right)
\\&=&n^z\frac{n!}{\prod_{k=0}^n (z+k)}
\\&=&\frac{n^zn!}{\prod_{k=0}^n (z+k)}
\end{eqnarray}$$
\(G_n\)の極限
$$\begin{eqnarray}
\lim_{n\rightarrow\infty}G_n\left(z\right)
&=&\lim_{n\rightarrow\infty}\int_0^n t^{z-1}\left(1-\frac{t}{n}\right)^{n}\mathrm{d}t
\\&=&\int_0^\infty t^{z-1} e^{-t}\mathrm{d}t
\\&&\;\ldots\;\lim_{n\rightarrow\infty}\left(1-\frac{t}{n}\right)^{n}
=\lim_{n\rightarrow\infty}\left(1+\frac{-t}{n}\right)^{n}
=e^{-t}
\\&=&\Gamma\left(z\right)
\end{eqnarray}$$
よって\(G_n\)の総乗表示での極限も\(\Gamma\left(z\right)\)
$$\begin{eqnarray}
\lim_{n\rightarrow\infty}G_n\left(z\right)
&=&\lim_{n\rightarrow\infty}\frac{n^zn!}{\prod_{k=0}^n (z+k)}
\\&=&\Gamma\left(z\right)
\end{eqnarray}$$
0 件のコメント:
コメントを投稿