間違いしかありません.コメントにてご指摘いただければ幸いです(気が付いた点を特に断りなく頻繁に書き直していますのでご注意ください).

偏角の微分

$$\begin{eqnarray} z&=&x+iy\;\ldots\;z\in\mathbb{Z},\;x,y\in\mathbb{R} \\&=&re^{i\theta}\;\ldots\;r,\theta\in\mathbb{R},\;r\geq0,\;-\pi\lt\theta\leq\pi \\r&=&|z|=\sqrt{x^2+y^2} \\\arg{\left(z\right)}&=&\theta+2n\pi\;\left(n\in\mathbb{Z}\right) \\&=&\mathrm{Arg}{\left(z\right)}+2n\pi\;\left(n\in\mathbb{Z}\right) \end{eqnarray}$$ $$\begin{eqnarray} \mathrm{Arg}{\left(z\right)}&=&\mathrm{Arg}{\left(x+iy\right)} \\&=&\begin{cases} \tan^{-1}{\left(\frac{y}{x}\right)} & (x\gt0) \\\tan^{-1}{\left(\frac{y}{x}\right)+\pi} & (x\lt0\;かつ\;y\geq0) \\\tan^{-1}{\left(\frac{y}{x}\right)-\pi} & (x\lt0\;かつ\;y\lt0) \\\frac{\pi}{2} & (x=0\;かつ\;y\gt0) \\-\frac{\pi}{2} & (x=0\;かつ\;y\lt0) \\不定 & (x=0\;かつ\;y=0) \end{cases} \end{eqnarray}$$

xでの偏微分

$$\begin{eqnarray} \frac{\partial}{\partial x}\arg{\left(z\right)}&=&\frac{\partial}{\partial x}\left\{\theta+2n\pi\right\} \\&=&\frac{\partial}{\partial x}\left\{\mathrm{Arg}{\left(z\right)}+2n\pi\right\} \\&=&\frac{\partial}{\partial x}\mathrm{Arg}{\left(z\right)}+\frac{\partial}{\partial x}2n\pi \\&=&\frac{\partial}{\partial x}\mathrm{Arg}{\left(z\right)}\;\ldots\;\frac{\partial}{\partial x} C=0\;(Cは定数.xの凾数でない) \end{eqnarray}$$ $$\begin{eqnarray} \frac{\partial}{\partial x}\mathrm{Arg}{\left(z\right)}&=&\frac{\partial}{\partial x}\mathrm{Arg}{\left(x+iy\right)} \\&=&\begin{cases} \frac{\partial}{\partial x}\tan^{-1}{\left(\frac{y}{x}\right)} &=&\frac{-y}{x^2+y^2}& (x\gt0) \\\frac{\partial}{\partial x}\tan^{-1}{\left(\frac{y}{x}\right)+\pi} &=&\frac{-y}{x^2+y^2}& (x\lt0\;かつ\;y\geq0) \\\frac{\partial}{\partial x}\tan^{-1}{\left(\frac{y}{x}\right)-\pi} &=&\frac{-y}{x^2+y^2}& (x\lt0\;かつ\;y\lt0) \\\frac{\partial}{\partial x}\frac{\pi}{2} &=&0& (x=0\;かつ\;y\gt0) \\\frac{\partial}{\partial x}-\frac{\pi}{2} &=&0& (x=0\;かつ\;y\lt0) \\不定 &&& (x=0\;かつ\;y=0) \end{cases} \ldots\href{https://shikitenkai.blogspot.com/2021/07/tan^{-1}yx.html}{\frac{\partial}{\partial x}\tan^{-1}{\left(\frac{y}{x}\right)}=\frac{-y}{x^2+y^2}} \end{eqnarray}$$

yでの偏微分

$$\begin{eqnarray} \frac{\partial}{\partial y}\arg{\left(z\right)}&=&\frac{\partial}{\partial y}\left\{\theta+2n\pi\right\} \\&=&\frac{\partial}{\partial y}\left\{\mathrm{Arg}{\left(z\right)}+2n\pi\right\} \\&=&\frac{\partial}{\partial y}\mathrm{Arg}{\left(z\right)}+\frac{\partial}{\partial y}2n\pi \\&=&\frac{\partial}{\partial y}\mathrm{Arg}{\left(z\right)}\;\ldots\;\frac{\partial}{\partial y} C=0\;(Cは定数.xの凾数でない) \end{eqnarray}$$ $$\begin{eqnarray} \frac{\partial}{\partial y}\mathrm{Arg}{\left(z\right)}&=&\frac{\partial}{\partial y}\mathrm{Arg}{\left(x+iy\right)} \\&=&\begin{cases} \frac{\partial}{\partial y}\tan^{-1}{\left(\frac{y}{x}\right)} &=&\frac{x}{x^2+y^2}& (x\gt0) \\\frac{\partial}{\partial y}\tan^{-1}{\left(\frac{y}{x}\right)+\pi} &=&\frac{x}{x^2+y^2}& (x\lt0\;かつ\;y\geq0) \\\frac{\partial}{\partial y}\tan^{-1}{\left(\frac{y}{x}\right)-\pi} &=&\frac{x}{x^2+y^2}& (x\lt0\;かつ\;y\lt0) \\\frac{\partial}{\partial y}\frac{\pi}{2} &=&0& (x=0\;かつ\;y\gt0) \\\frac{\partial}{\partial y}-\frac{\pi}{2} &=&0& (x=0\;かつ\;y\lt0) \\不定 &&& (x=0\;かつ\;y=0) \end{cases} \ldots\href{https://shikitenkai.blogspot.com/2021/07/tan^{-1}yx.html}{\frac{\partial}{\partial y}\tan^{-1}{\left(\frac{y}{x}\right)}=\frac{x}{x^2+y^2}} \end{eqnarray}$$

0 件のコメント:

コメントを投稿