間違いしかありません.コメントにてご指摘いただければ幸いです(気が付いた点を特に断りなく頻繁に書き直していますのでご注意ください).

arctan(y/x)の偏微分

\(\tan^{-1}{\left(\frac{y}{x}\right)}\)の偏微分

$$\begin{eqnarray} \theta&=&\tan^{-1}{\left(\frac{y}{x}\right)} \end{eqnarray}$$

\(\tan^{-1}{\left(\frac{y}{x}\right)}\)の\(x\)での偏微分

$$\begin{eqnarray} \frac{\partial }{\partial x}\tan^{-1}{\left(\frac{y}{x}\right)} &=&\left\{\frac{\partial }{\partial u}\tan^{-1}{\left(u\right)}\right\}\frac{\partial u}{\partial x} \;\ldots\;u=\frac{y}{x} \\&=&\frac{1}{1+u^2}\frac{\partial }{\partial x}\frac{y}{x} \;\ldots\;\href{https://shikitenkai.blogspot.com/2021/07/arctanx.html}{\frac{\partial }{\partial u}\tan^{-1}{\left(u\right)}=\frac{1}{1+u^2}} \\&=&\frac{1}{1+\frac{y^2}{x^2}}y\frac{\partial }{\partial x}x^{-1} \\&=&\frac{1}{\frac{x^2+y^2}{x^2}}y\left(-x^{-2}\right) \\&=&\frac{x^2}{x^2+y^2}y\left(-x^{-2}\right) \\&=&\frac{-y}{x^2+y^2} \end{eqnarray}$$

\(\tan^{-1}{\left(\frac{y}{x}\right)}\)の\(y\)での偏微分

$$\begin{eqnarray} \\\frac{\partial }{\partial y}\tan^{-1}{\left(\frac{y}{x}\right)} &=&\left\{\frac{\partial }{\partial u}\tan^{-1}{\left(u\right)}\right\}\frac{\partial u}{\partial y} \;\ldots\;u=\frac{y}{x} \\&=&\frac{1}{1+u^2}\frac{\partial }{\partial y}\frac{y}{x} \;\ldots\;\href{https://shikitenkai.blogspot.com/2021/07/arctanx.html}{\frac{\partial }{\partial u}\tan^{-1}{\left(u\right)}=\frac{1}{1+u^2}} \\&=&\frac{1}{1+\frac{y^2}{x^2}}x^{-1}\frac{\partial }{\partial y}y \\&=&\frac{1}{\frac{x^2+y^2}{x^2}}x^{-1}\cdot1 \\&=&\frac{x^2}{x^2+y^2}x^{-1} \\&=&\frac{x}{x^2+y^2} \end{eqnarray}$$

0 件のコメント:

コメントを投稿