\(\tan^{-1}{\left(x\right)}\)の微分
$$\begin{eqnarray}
y&=&\tan^{-1}{\left(x\right)}
\\x&=&\tan{\left(y\right)}
\\\frac{\mathrm{d}x}{\mathrm{d}y}&=&\frac{\mathrm{d}}{\mathrm{d}y}\tan{\left(y\right)}
\\&=&1+\tan^2{\left(y\right)}
\\\frac{\mathrm{d}y}{\mathrm{d}x}&=&\frac{1}{1+\tan^2{\left(y\right)}}
\;\ldots\;\href{https://shikitenkai.blogspot.com/2021/07/blog-post.html}{\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{1}{\frac{\mathrm{d}x}{\mathrm{d}y}}\;\left(逆凾数の微分\right)}
\\&=&\frac{1}{1+x^2}
\;\ldots\;\href{https://shikitenkai.blogspot.com/2021/07/tanx-2.html}{x=\tan{\left(y\right)}}
\end{eqnarray}$$
0 件のコメント:
コメントを投稿