間違いしかありません.コメントにてご指摘いただければ幸いです(気が付いた点を特に断りなく頻繁に書き直していますのでご注意ください).

コーシー・リーマンの関係式

コーシー・リーマンの関係式

複素平面の実軸方向の微分(偏微分)

$$\begin{eqnarray} \lim_{\Delta z\rightarrow0}\frac{f(z_0+\Delta z)-f(z_0)}{\Delta z} &=& \lim_{\Delta x\rightarrow0}\frac{\left\{u\left(x_0+\Delta x, y_0\right)+iv\left(x_0+\Delta x, y_0\right)\right\} -\left\{u\left(x_0, y_0\right)+iv\left(x_0, y_0\right)\right\}}{\Delta x} \;\ldots\;z_0,\Delta zin\mathbb{C},\;x_0,y_0,\Delta x\in\mathbb{R} \\&=& \lim_{\Delta x\rightarrow0}\left\{ \frac{ u\left(x_0+\Delta x, y_0\right) -u\left(x_0, y_0\right) }{\Delta x} +i\frac{ v\left(x_0+\Delta x, y_0\right) -v\left(x_0, y_0\right) }{\Delta x} \right\} \\&=&\frac{\partial u\left(x_0, y_0\right)}{\partial x}+i\frac{\partial v\left(x_0, y_0\right)}{\partial x} \end{eqnarray}$$

複素平面の虚軸方向の微分(偏微分)

$$\begin{eqnarray} \lim_{\Delta z\rightarrow0}\frac{f(z_0+\Delta z)-f(z_0)}{\Delta z} &=& \lim_{\Delta y\rightarrow0}\frac{\left\{u\left(x_0, y_0+\Delta y\right)+iv\left(x_0, y_0+\Delta y\right)\right\} -\left\{u\left(x_0, y_0\right)+iv\left(x_0, y_0\right)\right\}}{i\Delta y} \;\ldots\;z_0,\Delta zin\mathbb{C},\;x_0,y_0,\Delta y\in\mathbb{R} \\&=& \lim_{\Delta y\rightarrow0}\left\{ \frac{ u\left(x_0, y_0+\Delta y\right) -u\left(x_0, y_0\right) }{i\Delta y} +i\frac{ v\left(x_0, y_0+\Delta y\right) -v\left(x_0, y_0\right) }{i\Delta y} \right\} \\&=&\frac{1}{i}\frac{\partial u\left(x_0, y_0\right)}{\partial y}+\frac{i}{i}\frac{\partial v\left(x_0, y_0\right)}{\partial y} \\&=&\frac{i}{i}\frac{1}{i}\frac{\partial u\left(x_0, y_0\right)}{\partial y}+\frac{\partial v\left(x_0, y_0\right)}{\partial y} \\&=&\frac{i}{-1}\frac{\partial u\left(x_0, y_0\right)}{\partial y}+\frac{\partial v\left(x_0, y_0\right)}{\partial y} \\&=&-i\frac{\partial u\left(x_0, y_0\right)}{\partial y}+\frac{\partial v\left(x_0, y_0\right)}{\partial y} \\&=&\frac{\partial v\left(x_0, y_0\right)}{\partial y}+i\left\{-\frac{\partial u\left(x_0, y_0\right)}{\partial y}\right\} \end{eqnarray}$$

複素平面の各軸微分結果の実部同士,虚部同士が等しくなる場合という関係

$$\left\{ \begin{eqnarray} \frac{\partial u}{\partial x}&=&\frac{\partial v}{\partial y} \\\frac{\partial v}{\partial x}&=&-\frac{\partial u}{\partial y} \end{eqnarray} \right.$$

0 件のコメント:

コメントを投稿