\(az\)の微分
\(u+iv\)で表す
$$\begin{eqnarray}
az&=&a(x+iy)\;\ldots\;a,x,y\in\mathbb{R},\;z\in\mathbb{C}
\\&=&ax+iay
\\&=&u(x,y)+iv(x,y)
\end{eqnarray}$$
$$\left\{
\begin{eqnarray}
u(x,y)&=&ax
\\v(x,y)&=&ay
\end{eqnarray}
\right.$$
\(u,v\)を\(x,y\)で偏微分する
$$\begin{eqnarray}
\frac{\partial u(x,y)}{\partial x}&=&\frac{\partial }{\partial x}ax
\\&=&a
\\\frac{\partial u(x,y)}{\partial y}&=&\frac{\partial }{\partial y}ax
\\&=&0
\\\frac{\partial v(x,y)}{\partial x}&=&\frac{\partial }{\partial x}ay
\\&=&0
\\\frac{\partial v(x,y)}{\partial y}&=&\frac{\partial }{\partial y}ay
\\&=&a
\end{eqnarray}$$
コーシー・リーマンの関係式を満たす
$$\href{https://shikitenkai.blogspot.com/2021/07/blog-post_19.html}{
\left\{
\begin{eqnarray}
\frac{\partial u}{\partial x}&=&\frac{\partial v}{\partial y}
\\\frac{\partial u}{\partial y}&=&-\frac{\partial v}{\partial x}
\end{eqnarray}
\right.
}$$
実軸方向での微分
\begin{eqnarray}
\frac{\mathrm{d}}{\mathrm{d} z}az&=&\href{https://shikitenkai.blogspot.com/2021/07/blog-post_19.html}{\frac{\partial u(x,y)}{\partial x}+i\frac{\partial v(x,y)}{\partial x}}
\\&=&a+i0
\\&=&a
\end{eqnarray}
虚軸方向での微分
\begin{eqnarray}
\frac{\mathrm{d}}{\mathrm{d} z}az&=&\href{https://shikitenkai.blogspot.com/2021/07/blog-post_19.html}{\frac{\partial v(x,y)}{\partial y}-i\frac{\partial u(x,y)}{\partial y}}
\\&=&a-i0
\\&=&a
\end{eqnarray}
0 件のコメント:
コメントを投稿