ディガンマ凾数同士の差
$$\begin{eqnarray}
\psi\left(y\right)-\psi\left(x\right)
&=&\lim_{n\rightarrow\infty} \left\{
\log{\left(n \right)}
-\sum_{k=0}^n \frac{1}{y+k}
\right\}
- \lim_{n\rightarrow\infty} \left\{
\log{\left(n \right)}
-\sum_{k=0}^n \frac{1}{x+k}
\right\}
\;\ldots\;\href{https://shikitenkai.blogspot.com/2021/07/blog-post_47.html}{\psi\left(x\right)=\lim_{n\rightarrow\infty} \left\{
\log{\left(n \right)}
-\sum_{k=0}^n \frac{1}{x+k}
\right\}}
\\&=&\lim_{n\rightarrow\infty}\left\{
\log{\left(n \right)}
-\sum_{k=0}^n \frac{1}{y+k}
-\log{\left(n \right)}
+\sum_{k=0}^n \frac{1}{x+k}
\right\}
\\&=&\lim_{n\rightarrow\infty}\left\{
\sum_{k=0}^n \frac{1}{x+k}
-\sum_{k=0}^n \frac{1}{y+k}
\right\}
\\&=&
\sum_{k=0}^\infty \frac{1}{x+k}
-\sum_{k=0}^\infty \frac{1}{y+k}
\\&=&
\int_{0}^1 \frac{u^{x-1}}{1-u} \mathrm{d}u
-\int_{0}^1 \frac{u^{y-1}}{1-u} \mathrm{d}u
\\&&\;\ldots\;\href{https://shikitenkai.blogspot.com/2021/07/uz-11-u011zk.html}{\sum_{k=0}^\infty \frac{1}{z+k}=\int_{0}^1 \frac{u^{z-1}}{1-u} \mathrm{d}u}
\\&=&
\int_{0}^1 \left(\frac{u^{x-1}}{1-u}
- \frac{u^{y-1}}{1-u} \right)\mathrm{d}u
\\&=&
\int_{0}^1 \frac{u^{x-1}-u^{y-1}}{1-u}\mathrm{d}u
\end{eqnarray}$$
0 件のコメント:
コメントを投稿