間違いしかありません.コメントにてご指摘いただければ幸いです(気が付いた点を特に断りなく頻繁に書き直していますのでご注意ください).

cosh(i x), sinh(i x) (純虚数に対するcosh, sinh)

\(\cosh{\left(ix\right)}\)

$$\begin{eqnarray} \cosh{\left(x\right)}&=&\frac{e^x+e^{-x}}{2} \\\cosh{\left(ix\right)}&=&\frac{e^{ix}+e^{-ix}}{2} \\&=&\frac{\left\{\cos{\left(x\right)}+i\sin{\left(x\right)}\right\}+\left\{\cos{\left(-x\right)}+i\sin{\left(-x\right)}\right\}}{2} \\&&\;\ldots\;e^{ix}=\cos{\left(x\right)}+i\sin{\left(x\right)} \\&=&\frac{\left\{\cos{\left(x\right)}+i\sin{\left(x\right)}\right\}+\left\{\cos{\left(x\right)}-i\sin{\left(x\right)}\right\}}{2} \\&&\;\ldots\;\cos{\left(-x\right)}=\cos{\left(x\right)},\;\sin{\left(-x\right)}=-\sin{\left(-x\right)} \\&=&\frac{\cos{\left(x\right)}\color{red}{+i\sin{\left(x\right)}}\color{black}{+\cos{\left(x\right)}}\color{red}{-i\sin{\left(x\right)}}}{2} \\&=&\frac{\cos{\left(x\right)}+\cos{\left(x\right)}}{2} \\&=&\frac{2\cos{\left(x\right)}}{2} \\&=&\cos{\left(x\right)} \end{eqnarray}$$

\(\sinh{\left(ix\right)}\)

$$\begin{eqnarray} \sinh{\left(x\right)}&=&\frac{e^x-e^{-x}}{2} \\\sinh{\left(ix\right)}&=&\frac{e^{ix}-e^{-ix}}{2} \\&=&\frac{\left\{\cos{\left(x\right)}+i\sin{\left(x\right)}\right\}-\left\{\cos{\left(-x\right)}+i\sin{\left(-x\right)}\right\}}{2} \\&&\;\ldots\;e^{ix}=\cos{\left(x\right)}+i\sin{\left(x\right)} \\&=&\frac{\left\{\cos{\left(x\right)}+i\sin{\left(x\right)}\right\}-\left\{\cos{\left(x\right)}-i\sin{\left(x\right)}\right\}}{2} \\&&\;\ldots\;\cos{\left(-x\right)}=\cos{\left(x\right)},\;\sin{\left(-x\right)}=-\sin{\left(-x\right)} \\&=&\frac{\color{red}{\cos{\left(x\right)}}\color{black}{+i\sin{\left(x\right)}}\color{red}{-\cos{\left(x\right)}}\color{black}{+i\sin{\left(x\right)}}}{2} \\&=&\frac{i\sin{\left(x\right)}+i\sin{\left(x\right)}}{2} \\&=&\frac{2i\sin{\left(x\right)}}{2} \\&=&i\sin{\left(x\right)} \end{eqnarray}$$

\(cos{(i x)}, sin{(i x)}\) (純虚数に対する\(\cos, \sin\))

\(cos{(i x)}, sin{(i x)}\) (純虚数に対する\(\cos, \sin\))

0 件のコメント:

コメントを投稿