\(\tan{\left(x\right)}\)の微分 2
(sin, cosの微分を既知とした場合)
$$\begin{eqnarray}
\\y&=&\tan{\left(x\right)}
\\\frac{\mathrm{d}}{\mathrm{d}x}\tan{\left(x\right)}
&=&\lim_{h\rightarrow0}\frac{\tan{\left(x+h\right)}-\tan{\left(x\right)}}{h}
\\&=&\lim_{h\rightarrow0}\frac{1}{h}\left\{
\frac{\tan{\left(x\right)}+\tan{\left(h\right)}}{1-\tan{\left(x\right)}\tan{\left(h\right)}}
-\tan{\left(x\right)}
\right\}
\\&=&\lim_{h\rightarrow0}\frac{1}{h}
\frac{
\tan{\left(x\right)}+\tan{\left(h\right)}
-\tan{\left(x\right)}\left(1-\tan{\left(x\right)}\tan{\left(h\right)}\right)
}{1-\tan{\left(x\right)}\tan{\left(h\right)}}
\\&=&\lim_{h\rightarrow0}\frac{1}{h}
\frac{
\tan{\left(x\right)}+\tan{\left(h\right)}
-\tan{\left(x\right)}+\tan^2{\left(x\right)}\tan{\left(h\right)}
}{1-\tan{\left(x\right)}\tan{\left(h\right)}}
\\&=&\lim_{h\rightarrow0}\frac{1}{h}
\frac{
\tan{\left(h\right)}+\tan^2{\left(x\right)}\tan{\left(h\right)}
}{1-\tan{\left(x\right)}\tan{\left(h\right)}}
\\&=&\lim_{h\rightarrow0}\frac{1}{h}
\frac{
\tan{\left(h\right)}\left(1+\tan^2{\left(x\right)}\right)
}{1-\tan{\left(x\right)}\tan{\left(h\right)}}
\\&=&\lim_{h\rightarrow0}\frac{\tan{\left(h\right)}}{h}
\frac{1+\tan^2{\left(x\right)}}{1-\tan{\left(x\right)}\tan{\left(h\right)}}
\\&=&1\cdot\frac{1+\tan^2{\left(x\right)}}{1-\tan{\left(x\right)}\cdot0}
\\&&\;\ldots\;\lim_{h\rightarrow0}\frac{\tan{\left(h\right)}}{h}
=\lim_{h\rightarrow0}\frac{1}{h}\frac{\sin{\left(h\right)}}{\cos{\left(h\right)}}
=\lim_{h\rightarrow0}\frac{\sin{\left(h\right)}}{h}\frac{1}{\cos{\left(h\right)}}
=1\cdot1
=1
\\&&\;\ldots\;\lim_{h\rightarrow0}\frac{\sin{\left(h\right)}}{h}=1
\\&&\;\ldots\;\lim_{h\rightarrow0}\cos{\left(h\right)}=1
\\&=&1+\tan^2{\left(x\right)}
\end{eqnarray}$$
$$\begin{eqnarray}
1+\tan^2{\left(x\right)}&=&1+\left\{\frac{\sin{\left(x\right)}}{\cos{\left(x\right)}}\right\}^2
\\&=&\frac{\cos^2{\left(x\right)}+\sin^2{\left(x\right)}}{\cos^2{\left(x\right)}}
\\&=&\frac{1}{ \cos^2{\left(x\right)} }
\;\cdots\;\cos^2{\left(x\right)}+\sin^2{\left(x\right)}=1
\\&=&\sec^{2}{\left(x\right)}
\end{eqnarray}$$
0 件のコメント:
コメントを投稿