ディガンマ凾数の相反公式
ディガンマ凾数の定義
$$\begin{eqnarray}
\psi\left(z\right)&=&\frac{\mathrm{d}}{\mathrm{d}z} \log{\left(\Gamma\left(z\right)\right)}
\\&=&\frac{\Gamma^\prime\left(z\right)}{\Gamma\left(z\right)}
\end{eqnarray}$$
\(1-z\)のディガンマ凾数
$$\begin{eqnarray}
\psi\left(1-z\right)
&=&\frac{\mathrm{d}}{\mathrm{d}z} \log{\left(\Gamma\left(1-z\right)\right)}
\\&=&\frac{\mathrm{d}}{\mathrm{d}u} \log{\left(\Gamma\left(u\right)\right)}\frac{\mathrm{d}u}{\mathrm{d}z}
\;\ldots\;u=1-z,\;\frac{\mathrm{d}u}{\mathrm{d}z}=-1
\\&=&-\frac{\mathrm{d}}{\mathrm{d}z}\log\left(\Gamma\left(1-z\right)\right)
\\&=&-\frac{\mathrm{d}}{\mathrm{d}z}\log\left(\frac{\Gamma\left(z\right)}{\Gamma\left(z\right)}\Gamma\left(1-z\right)\right)
\\&=&-\frac{\mathrm{d}}{\mathrm{d}z}\log\left(\frac{1}{\Gamma\left(z\right)}\frac{\pi}{\sin{\left(\pi z\right)}}\right)
\;\ldots\;\href{https://shikitenkai.blogspot.com/2021/07/blog-post_26.html}{\Gamma\left(z\right)\Gamma\left(1-z\right)=\frac{\pi}{\sin{\left(\pi z\right)}}}
\\&=&-\left\{
\frac{\mathrm{d}}{\mathrm{d}z} \log \left(\pi\right)
-\frac{\mathrm{d}}{\mathrm{d}z} \log \left(\sin{\left(\pi z\right)}\right)
-\frac{\mathrm{d}}{\mathrm{d}z} \log \left(\Gamma\left(z\right)\right)
\right\}
\\&=&-\left\{0-\pi\cot{\left(\pi z\right)}-\psi\left(z\right)\right\}
\\&&\;\ldots\;\href{https://shikitenkai.blogspot.com/2021/07/logsinz.html}{\frac{\mathrm{d}}{\mathrm{d}z} \log \sin{\left(\pi z\right)}=\pi\cot{\left(\pi z\right)}}
\\&&\;\ldots\;\frac{\mathrm{d}}{\mathrm{d}z} \log \Gamma\left(z\right)=\psi\left(z\right),\;(ディガンマ凾数の定義)
\\&=&\pi\cot{\left(\pi z\right)}+\psi\left(z\right)
\end{eqnarray}$$
ディガンマ凾数の相反公式
$$\begin{eqnarray}
\psi\left(1-z\right)
&=&\pi\cot{\left(\pi z\right)}+\psi\left(z\right)
\\\psi\left(1-z\right)-\psi\left(z\right)&=&\pi\cot{\left(\pi z\right)}
\end{eqnarray}$$
0 件のコメント:
コメントを投稿