単回帰モデルの最尤推定
単回帰モデル
$$
\begin{eqnarray}
y_i&=&\alpha+\beta x_i+\epsilon_i \;(i=1,\cdots,n)
\\&&\epsilon_i \overset{iid}{\sim} N(0,\sigma^2)\;\cdots\;独立同一分布(independent\;and\;identically\;distributed;\;IID,\;i.i.d.,\;iid)
\end{eqnarray}
$$
対数尤度凾数
対数尤度凾数は以下のようになる.
$$
\begin{eqnarray}
f(y_1,\cdots,y_n;\alpha,\beta,\sigma^2)&=&\prod_{i=1}^{n}\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2\sigma^2}\left(y_i-\alpha-\beta x_i\right)^2}
\\&=&\left(2\pi\right)^{-\frac{n}{2}} \left(\sigma^2\right)^{-\frac{n}{2}} e^{-\frac{1}{2\sigma^2}\sum_{i=1}^{n}{\left(y_i-\alpha-\beta x_i\right)^2}}
\\l(\alpha,\beta,\sigma^2;y_1,\cdots,y_n)&=&\log{\left\{
\left(2\pi\right)^{-\frac{n}{2}} \left(\sigma^2\right)^{-\frac{n}{2}} e^{-\frac{1}{2\sigma^2}\sum_{i=1}^{n}{\left(y_i-\alpha-\beta x_i\right)^2}}
\right\}}
\\&=&\log{\left\{
\left(2\pi\right)^{-\frac{n}{2}}
\right\}}
+\log{\left\{
\left(\sigma^2\right)^{-\frac{n}{2}}
\right\}}
+\log{\left\{
e^{-\frac{1}{2\sigma^2}\sum_{i=1}^{n}{\left(y_i-\alpha-\beta x_i\right)^2}}
\right\}}
\\&=&-\frac{n}{2}\log{\left(2\pi\right)}
-\frac{n}{2}\log{\left(\sigma^2\right)}
-\frac{1}{2\sigma^2} \sum_{i=1}^{n}{\left(y_i-\alpha-\beta x_i\right)^2}
\end{eqnarray}
$$
スコア凾数
スコア凾数は以下のようになる.
$$
\begin{eqnarray}
\frac{\partial l}{\partial \alpha}
&=&\frac{\partial l}{\partial \alpha}\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^{n}{\left(y_i-\alpha-\beta x_i\right)^2}\right\}
\\&=&-\frac{1}{2\sigma^2} \sum_{i=1}^{n}{\frac{\partial l}{\partial \alpha}\left(y_i-\alpha-\beta x_i\right)^2}
\\&=&-\frac{1}{2\sigma^2} \sum_{i=1}^{n}{\left(y_i-\alpha-\beta x_i\right)(-1)}
\\&=&-\frac{-1}{2\sigma^2} \sum_{i=1}^{n}{\left(y_i-\alpha-\beta x_i\right)}
\\&=&\frac{1}{2\sigma^2} \left(\sum_{i=1}^{n}y_i-\alpha\sum_{i=1}^{n}1-\beta\sum_{i=1}^{n} x_i\right)
\\&=&\frac{1}{2\sigma^2} \left(n\bar{y}-n\alpha-n\beta\bar{x}\right)
\;\cdots\;\bar{x}=\frac{1}{n}\sum_{i=1}^{n}x_i,\;\bar{y}=\frac{1}{n}\sum_{i=1}^{n}y_i
\\&=&\frac{n}{2\sigma^2} \left(\bar{y}-\alpha-\beta\bar{x}\right)
\end{eqnarray}
$$
$$
\begin{eqnarray}
\frac{\partial l}{\partial \beta}
&=&\frac{\partial l}{\partial \beta}\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^{n}{\left(y_i-\alpha-\beta x_i\right)^2}\right\}
\\&=&-\frac{1}{2\sigma^2} \sum_{i=1}^{n}{\frac{\partial l}{\partial \beta}\left(y_i-\alpha-\beta x_i\right)^2}
\\&=&-\frac{1}{2\sigma^2} \sum_{i=1}^{n}{2\left(y_i-\alpha-\beta x_i\right)(-x_i)}
\\&=&-\frac{-2}{2\sigma^2} \sum_{i=1}^{n}{\left(x_iy_i-x_i\alpha-\beta x_i^2\right)}
\\&=&\frac{1}{\sigma^2} \left(\sum_{i=1}^{n}x_iy_i-\sum_{i=1}^{n}x_i\alpha-\sum_{i=1}^{n}\beta x_i^2\right)
\\&=&\frac{1}{\sigma^2} \left(\sum_{i=1}^{n}x_iy_i-n\bar{x}\alpha-\beta \sum_{i=1}^{n}x_i^2\right)
\;\cdots\;\bar{x}=\frac{1}{n}\sum_{i=1}^{n}x_i
\end{eqnarray}
$$
$$
\begin{eqnarray}
\frac{\partial l}{\partial \sigma^2}
&=&\frac{\partial l}{\partial \sigma^2}\left\{
-\frac{n}{2}\log{\left(\sigma^2\right)}
-\frac{1}{2\sigma^2} \sum_{i=1}^{n}{\left(y_i-\alpha-\beta x_i\right)^2}
\right\}
\\&=&
-\frac{n}{2}\frac{\partial l}{\partial \sigma^2}\log{\left(\sigma^2\right)}
-\frac{1}{2}\left\{\sum_{i=1}^{n}{\left(y_i-\alpha-\beta x_i\right)^2}\right\}\frac{\partial l}{\partial \sigma^2}\frac{1}{\sigma^2}
\\&=&
-\frac{n}{2}\frac{\partial l}{\partial \sigma^2}\log{\left(\sigma^2\right)}
-\frac{1}{2}\left\{\sum_{i=1}^{n}{\left(y_i-\alpha-\beta x_i\right)^2}\right\}\frac{\partial l}{\partial u}\frac{1}{u}
\;\cdots\;u=\sigma^2
\\&=&
-\frac{n}{2}\frac{\partial l}{\partial \sigma^2}\log{\left(\sigma^2\right)}
-\frac{1}{2}\left\{\sum_{i=1}^{n}{\left(y_i-\alpha-\beta x_i\right)^2}\right\}\left(\frac{-1}{u^2}\right)
\\&=&
-\frac{n}{2}\frac{1}{\sigma^2}
-\frac{1}{2}\left\{\sum_{i=1}^{n}{\left(y_i-\alpha-\beta x_i\right)^2}\right\}\left(\frac{-1}{\sigma^4}\right)
\;\cdots\;u=\sigma^2
\\&=&
-\frac{1}{2\sigma^2}\left\{
n-\frac{1}{\sigma^2}\sum_{i=1}^{n}{\left(y_i-\alpha-\beta x_i\right)^2}
\right\}
\end{eqnarray}
$$
スコア凾数を連立させる
$$
\begin{eqnarray}
\left\{\begin{array}{rcl}
\;0&=&\frac{\partial l}{\partial \alpha}
\\0&=&\frac{\partial l}{\partial \beta}
\\0&=&\frac{\partial l}{\partial \sigma^2}
\end{array}\right.
\end{eqnarray}
$$
$$
\begin{eqnarray}
\left\{\begin{array}{rcl}
\;0&=&\frac{n}{2\sigma^2} \left(\bar{y}-\alpha-\beta\bar{x}\right)
\\0&=&\frac{1}{\sigma^2} \left(\sum_{i=1}^{n}x_iy_i-n\bar{x}\alpha-\beta \sum_{i=1}^{n}x_i^2\right)
\\0&=&-\frac{1}{2\sigma^2}\left\{n-\frac{1}{\sigma^2}\sum_{i=1}^{n}{\left(y_i-\alpha-\beta x_i\right)^2}\right\}
\end{array}\right.
\end{eqnarray}
$$
\(\alpha,\beta,\sigma^2\)の推定量を\(\hat{\alpha},\hat{\beta},\hat{\sigma}^2\)とし,\(\hat{\alpha},\hat{\beta},\hat{\sigma}^2\)の最尤推定量(maximum likelihood estimator)を\(\hat{\alpha}_{ML},\hat{\beta}_{ML},\hat{\sigma}^2_{ML}\)とする.
$$
\begin{eqnarray}
\left\{\begin{array}{rcl}
\;0&=&\bar{y}-\hat{\alpha}_{ML}-\hat{\beta}_{ML}\bar{x}
\\0&=&\sum_{i=1}^{n}x_iy_i-n\bar{x}\hat{\alpha}_{ML}-\hat{\beta}_{ML} \sum_{i=1}^{n}x_i^2
\\0&=&n-\frac{1}{\sigma^2_{ML}}\sum_{i=1}^{n}{\left(y_i-\hat{\alpha}_{ML}-\hat{\beta}_{ML} x_i\right)^2}
\end{array}\right.
\end{eqnarray}
$$
\(\hat{\alpha}_{ML}\)を求める
$$
\begin{eqnarray}
0&=&\bar{y}-\hat{\alpha}_{ML}-\hat{\beta}_{ML}\bar{x}
\\\hat{\alpha}_{ML}&=&\bar{y}-\hat{\beta}_{ML}\bar{x}
\end{eqnarray}
$$
\(\hat{\beta}_{ML}\)を求める
$$
\begin{eqnarray}
0&=&\sum_{i=1}^{n}x_iy_i-n\bar{x}\hat{\alpha}_{ML}-\hat{\beta}_{ML} \sum_{i=1}^{n}x_i^2
\\&=&\sum_{i=1}^{n}x_iy_i-n\bar{x}\left(\bar{y}-\hat{\beta}_{ML}\bar{x}\right)-\hat{\beta}_{ML} \sum_{i=1}^{n}x_i^2
\;\cdots\;\hat{\alpha}_{ML}=\bar{y}-\hat{\beta}_{ML}\bar{x}
\\&=&\sum_{i=1}^{n}x_iy_i-n\bar{x}\bar{y}+n\hat{\beta}_{ML}\bar{x}^2-\hat{\beta}_{ML} \sum_{i=1}^{n}x_i^2
\\&=&\sum_{i=1}^{n}x_iy_i-n\bar{x}\bar{y} -\hat{\beta}_{ML} \left\{ \left( \sum_{i=1}^{n}x_i^2 \right) - n\bar{x}^2\right\}
\\&=&\sum_{i=1}^{n}\left(x_i-\bar{x}\right)\left(y_i-\bar{y}\right) -\hat{\beta}_{ML} \sum_{i=1}^{n}\left(x_i-\bar{x}\right)^2
\\&=&S_{xy} -\hat{\beta}_{ML}\;S_{xx}
\;\cdots\;S_{xy}=\sum_{i=1}^{n}(x_i-\bar{x})(y_i-\bar{y}),\;S_{xx}=\sum_{i=1}^{n}(x_i-\bar{x})^2
\\\hat{\beta}_{ML}&=&\frac{S_{xy}}{S_{xx}}
\\&=&\hat{\beta}\;\cdots\;\href{https://shikitenkai.blogspot.com/2020/03/blog-post.html}{正規方程式の解と同じ}
\\\hat{\alpha}_{ML}&=&\bar{y}-\hat{\beta}_{ML}\bar{x}
\\&=&\bar{y}-\hat{\beta}\bar{x}
\\&=&\hat{\alpha}\;\cdots\;\href{https://shikitenkai.blogspot.com/2020/03/blog-post.html}{正規方程式の解と同じ}
\end{eqnarray}
$$
\(\hat{\sigma}^2_{ML}\)を求める
$$
\begin{eqnarray}
0&=&n-\frac{1}{\sigma^2_{ML}}\sum_{i=1}^{n}{\left(y_i-\hat{\alpha}_{ML}-\hat{\beta}_{ML} x_i\right)^2}
\\-n&=&-\frac{1}{\sigma^2_{ML}}\sum_{i=1}^{n}{\left(y_i-\hat{\alpha}_{ML}-\hat{\beta}_{ML} x_i\right)^2}
\\-n\sigma^2_{ML}&=&-\sum_{i=1}^{n}{\left(y_i-\hat{\alpha}_{ML}-\hat{\beta}_{ML} x_i\right)^2}
\\\hat{\sigma}^2_{ML}
&=&\frac{1}{n}\sum_{i=1}^{n}{\left(y_i-\hat{\alpha}_{ML}-\hat{\beta}_{ML} x_i\right)^2}
\\&=&\frac{1}{n}\sum_{i=1}^{n}{\left(y_i-\hat{\alpha}-\hat{\beta} x_i\right)^2}
\\&=&\frac{1}{n}\sum_{i=1}^{n}{\left(y_i-\hat{y}_i\right)^2}
\;\cdots\;\hat{y}_i=\hat{\alpha}+\hat{\beta} x_i
\\&=&\frac{1}{n}\sum_{i=1}^{n}{e_i^2}
\\&=&\frac{1}{n}(n-2)s^2
\;\cdots\;\href{https://shikitenkai.blogspot.com/2020/09/blog-post.html}{\sum_{i=1}^{n}{e_i^2}=(n-2)s^2,\;s^2=\frac{1}{n-2}\sum_{i=1}^{n}{e_i^2}}
\\&=&\frac{n-2}{n}s^2
\end{eqnarray}
$$
\(\hat{\alpha}_{ML},\hat{\beta}_{ML},\hat{\sigma}^2_{ML}\)
以上より最尤推定量\(\hat{\alpha}_{ML},\hat{\beta}_{ML},\hat{\sigma}^2_{ML}\)は以下のようになる.
$$
\begin{eqnarray}
\hat{\beta}_{ML}&=&\frac{S_{xy}}{S_{xx}}=\hat{\beta}
\\\hat{\alpha}_{ML}&=&\bar{y}-\hat{\beta}_{ML}\bar{x}=\bar{y}-\hat{\beta}\bar{x}=\hat{\alpha}
\\\hat{\sigma}_{ML}^2&=&\frac{n-2}{n}s^2
\end{eqnarray}
$$
0 件のコメント:
コメントを投稿