\(\mathbf{q}\mathbf{p}\mathbf{q}^{-1}\)
$$
\begin{eqnarray}
\mathbf{q}\mathbf{p}\mathbf{q}^{-1}&=&
\mathbf{q}\mathbf{p}\frac{\overline{\mathbf{q}}}{|\mathbf{q}|^2}=\frac{1}{|\mathbf{q}|^2}\mathbf{q}\mathbf{p}\overline{\mathbf{q}}
\\&=&\frac{1}{w^2+|\mathbf{V}|^2}\left(w,\;\mathbf{V}\right)\left(w_p,\;\mathbf{V}_p\right)\left(w,\;-\mathbf{V}\right)
\;\cdots\;\href{https://shikitenkai.blogspot.com/2020/05/quaternion.html}{\overline{\mathbf{q}}=w-x\mathbf{i}-y\mathbf{j}-z\mathbf{k}=\left(w,\;-\mathbf{V}\right),\;\left(実部,\mathbf{i}\mathbf{j}\mathbf{k} 部\right),\;\mathbf{V}=x\mathbf{i}+y\mathbf{j}+z\mathbf{k}}
\\&=&\frac{1}{w^2+|\mathbf{V}|^2}\left(
ww_p-\mathbf{V}\cdot\mathbf{V}_p
,\;
w\mathbf{V}_p+w_p\mathbf{V}+\mathbf{V}\times\mathbf{V}_p
\right)\left(w,\;-\mathbf{V}\right)
\;\cdots\;\href{https://shikitenkai.blogspot.com/2020/05/quaternion.html}{\mathbf{q}_1\mathbf{q}_2=(w_1,\mathbf{V}_1)(w_2,\mathbf{V}_2)=\left(w_1w_2-\mathbf{V}_1\cdot\mathbf{V}_2,\;w_1\mathbf{V}_2+w_2\mathbf{V}_1+\mathbf{V}_1\times\mathbf{V}_2\right)}
\\&=&\frac{1}{w^2+|\mathbf{V}|^2}\left(
(ww_p-\mathbf{V}\cdot\mathbf{V}_p)w
-(w\mathbf{V}_p+w_p\mathbf{V}
+\mathbf{V}\times\mathbf{V}_p)\cdot(-\mathbf{V})
,\;
(ww_p-\mathbf{V}\cdot\mathbf{V}_p)(-\mathbf{V})
+w(w\mathbf{V}_p+w_p\mathbf{V}+\mathbf{V}\times\mathbf{V}_p)
+(w\mathbf{V}_p+w_p\mathbf{V}+\mathbf{V}\times\mathbf{V}_p)\times(-\mathbf{V})
\right)
\;\cdots\;\href{https://shikitenkai.blogspot.com/2020/05/quaternion.html}{\mathbf{q}_1\mathbf{q}_2=(w_1,\mathbf{V}_1)(w_2,\mathbf{V}_2)=\left(w_1w_2-\mathbf{V}_1\cdot\mathbf{V}_2,\;w_1\mathbf{V}_2+w_2\mathbf{V}_1+\mathbf{V}_1\times\mathbf{V}_2\right)}
\\&=&\frac{1}{w^2+|\mathbf{V}|^2}\left(
w^2w_p
-w\mathbf{V}\cdot\mathbf{V}_p
+w\mathbf{V}_p\cdot\mathbf{V}
+w_p\mathbf{V}\cdot\mathbf{V}
+(\mathbf{V}\times\mathbf{V}_p)\cdot\mathbf{V})
,\;
-ww_p\mathbf{V}+(\mathbf{V}\cdot\mathbf{V}_p)\mathbf{V}
+w^2\mathbf{V}_p+ww_p\mathbf{V}+w\mathbf{V}\times\mathbf{V}_p
+\mathbf{V}\times(w\mathbf{V}_p+w_p\mathbf{V}+\mathbf{V}\times\mathbf{V}_p)
\right)
\\&&\;\cdots\;\mathbf{A}\times\mathbf{B}=-\mathbf{B}\times\mathbf{A}
\\&=&\frac{1}{w^2+|\mathbf{V}|^2}\left(
w^2w_p
+w_p|\mathbf{V}|^2
+(\mathbf{V}\times\mathbf{V})\cdot\mathbf{V}_p
,\;
+(\mathbf{V}\cdot\mathbf{V}_p)\mathbf{V}
+w^2\mathbf{V}_p
+w\mathbf{V}\times\mathbf{V}_p
+w\mathbf{V}\times\mathbf{V}_p
+w_p\mathbf{V}\times\mathbf{V}
+\mathbf{V}\times(\mathbf{V}\times\mathbf{V}_p)
\right)
\\&&\;\cdots\;\href{https://shikitenkai.blogspot.com/2020/06/blog-post_42.html}{(\mathbf{A}\times\mathbf{B})\cdot\mathbf{C}=(\mathbf{B}\times\mathbf{C})\cdot\mathbf{A}=(\mathbf{C}\times\mathbf{A})\cdot\mathbf{B}}
,\;\mathbf{A}\times\mathbf{A}=0
,\;\mathbf{A}\cdot\mathbf{A}=|\mathbf{A}|^2
\\&=&\frac{1}{w^2+|\mathbf{V}|^2}\left(
w_p(w^2+|\mathbf{V}|^2)
,\;
(\mathbf{V}\cdot\mathbf{V}_p)\mathbf{V}
+w^2\mathbf{V}_p
+2w\mathbf{V}\times\mathbf{V}_p
+(\mathbf{V}\cdot\mathbf{V}_p)\mathbf{V}
-(\mathbf{V}\cdot\mathbf{V})\mathbf{V}_p
\right)
\\&&\;\cdots\;\href{https://shikitenkai.blogspot.com/2020/06/blog-post_35.html}{\mathbf{A}\times(\mathbf{B}\times\mathbf{C})=(\mathbf{A}\cdot\mathbf{C})\mathbf{B}-(\mathbf{A}\cdot\mathbf{B})\mathbf{C}}
\\&=&\frac{1}{w^2+|\mathbf{V}|^2}\left(
w_p(w^2+|\mathbf{V}|^2)
,\;
2(\mathbf{V}\cdot\mathbf{V}_p) \mathbf{V}
+w^2 \mathbf{V}_p
+2w \mathbf{V}\times\mathbf{V}_p
-|\mathbf{V}|^2\mathbf{V}_p
\right)
\\&&\;\cdots\;\mathbf{A}\cdot\mathbf{A}=|\mathbf{A}|^2
\\&=&\frac{1}{w^2+|\mathbf{V}|^2}\left(
w_p(w^2+|\mathbf{V}|^2)
,\;
2(\mathbf{V}\cdot\mathbf{V}_p) \mathbf{V}
+(w^2-|\mathbf{V}|^2) \mathbf{V}_p
+2w \mathbf{V}\times\mathbf{V}_p
\right)
\end{eqnarray}
$$
特殊なp, qを考える
ここで,\(\mathbf{q}=\left(\cos{\left(\frac{\theta}{2}\right)}, \sin{\left(\frac{\theta}{2}\right)\mathbf{V}}\right)(ただし|\mathbf{V}|=1), \mathbf{p}=(0,\mathbf{V}_p)\)とする.
$$
\begin{eqnarray}
\mathbf{q}\mathbf{p}\mathbf{q}^{-1}
&=&\frac{1}{\cos^2{\left(\frac{\theta}{2}\right)}+\left|\sin{\left(\frac{\theta}{2}\right)}\mathbf{V}\right|^2}\left(
0\left(\cos^2{\left(\frac{\theta}{2}\right)}+\left|\sin{\left(\frac{\theta}{2}\right)}\mathbf{V}\right|^2\right)
,\;
2\left(\sin{\left(\frac{\theta}{2}\right)}\mathbf{V}\cdot\mathbf{V}_p\right)\sin{\left(\frac{\theta}{2}\right)} \mathbf{V}
+\left(\cos^2{\left(\frac{\theta}{2}\right)}-\left|\sin{\left(\frac{\theta}{2}\right)}\mathbf{V}\right|^2\right) \mathbf{V}_p
+2\cos{\left(\frac{\theta}{2}\right)} \sin{\left(\frac{\theta}{2}\right)}\mathbf{V}\times\mathbf{V}_p
\right)
\\&=&\frac{1}{\cos^2{\left(\frac{\theta}{2}\right)}+\sin{\left(\frac{\theta}{2}\right)}\left|\mathbf{V}\right|^2}\left(0,\;
2\sin^2{\left(\frac{\theta}{2}\right)} \left(\mathbf{V}\cdot\mathbf{V}_p\right)\mathbf{V}
+\left(\cos^2{\left(\frac{\theta}{2}\right)}-\sin^2{\left(\frac{\theta}{2}\right)}\left|\mathbf{V}\right|^2\right) \mathbf{V}_p
+2\cos{\left(\frac{\theta}{2}\right)}\sin{\left(\frac{\theta}{2}\right)} \mathbf{V}\times\mathbf{V}_p
\right)
\\&=&\frac{1}{\cos^2{\left(\frac{\theta}{2}\right)}+\sin{\left(\frac{\theta}{2}\right)}\cdot 1}\left(0,\;
2\sin^2{\left(\frac{\theta}{2}\right)} \left(\mathbf{V}\cdot\mathbf{V}_p\right)\mathbf{V}
+\left(\cos^2{\left(\frac{\theta}{2}\right)}-\sin^2{\left(\frac{\theta}{2}\right)}\cdot 1\right) \mathbf{V}_p
+2\cos{\left(\frac{\theta}{2}\right)}\sin{\left(\frac{\theta}{2}\right)} \mathbf{V}\times\mathbf{V}_p
\right)
\\&=&\frac{1}{1}\left(0,\;
2\sin^2{\left(\frac{\theta}{2}\right)} \left(\mathbf{V}\cdot\mathbf{V}_p\right)\mathbf{V}
+\left(\cos^2{\left(\frac{\theta}{2}\right)}-\sin^2{\left(\frac{\theta}{2}\right)}\right) \mathbf{V}_p
+2\cos{\left(\frac{\theta}{2}\right)}\sin{\left(\frac{\theta}{2}\right)} \mathbf{V}\times\mathbf{V}_p
\right)
\\&=&\left(0,\;
\left(1-\cos{\left(\theta\right)}\right)\left(\mathbf{V}\cdot\mathbf{V}_p\right) \mathbf{V}
+\cos{\left(\theta\right)} \mathbf{V}_p
+\sin{\left(\theta\right)} \mathbf{V}\times\mathbf{V}_p
\right)
\\&&\;\cdots\;2\sin^2{\left(\frac{\theta}{2}\right)}
=\sin^2{\left(\frac{\theta}{2}\right)}+\sin^2{\left(\frac{\theta}{2}\right)}
=\left(1-\cos^2{\left(\frac{\theta}{2}\right)}\right)+\sin^2{\left(\frac{\theta}{2}\right)}
=1-\left(\cos^2{\left(\frac{\theta}{2}\right)}-\sin^2{\left(\frac{\theta}{2}\right)}\right)
=1-\cos{\left(\theta\right)}
\\&&\;\cdots\;\cos^2{\left(\frac{\theta}{2}\right)}-\sin^2{\left(\frac{\theta}{2}\right)}
=\cos{\left(\frac{\theta}{2}+\frac{\theta}{2}\right)}
=\cos{\left(\theta\right)}
\\&&\;\cdots\;2\cos{\left(\frac{\theta}{2}\right)}\sin{\left(\frac{\theta}{2}\right)}
=\sin{\left(\frac{\theta}{2}+\frac{\theta}{2}\right)}
=\sin{\left(\theta\right)}
\\&=&\left(0,\;
\left(\mathbf{V}\cdot\mathbf{V}_p\right)\mathbf{V}
-\cos{\left(\theta\right)} \left(\mathbf{V}\cdot\mathbf{V}_p\right)\mathbf{V}
+\cos{\left(\theta\right)} \mathbf{V}_p
+\sin{\left(\theta\right)} \mathbf{V}\times\mathbf{V}_p
\right)
\\&=&\left(0,\;
\left(\mathbf{V}\cdot\mathbf{V}_p\right) \mathbf{V}
+\cos{\left(\theta\right)} \left(\mathbf{V}_p-\left(\mathbf{V}\cdot\mathbf{V}_p\right)\mathbf{V}\right)
+\sin{\left(\theta\right)} \mathbf{V}\times\mathbf{V}_p
\right)
\end{eqnarray}
$$
位置ベクトル\(\mathbf{V}_p\)を任意の回転軸\(\mathbf{V}\)周りで\(\theta\)だけ回転させる計算に対応する.
0 件のコメント:
コメントを投稿