間違いしかありません.コメントにてご指摘いただければ幸いです(気が付いた点を特に断りなく頻繁に書き直していますのでご注意ください).

lim x→π/2 ln(tan(x/2)) を求める

\(\lim_{x\rightarrow \frac{\pi}{2}}\ln{\left(\tan{\left(\frac{x}{2}\right)}\right)}\)を求める

高階の微分を求めておく

一階から順に求めておく. $$\begin{eqnarray} \frac{\mathrm{d}}{\mathrm{d}x} \ln{\left(\tan{\left(\frac{x}{2}\right)}\right)} &=&\frac{1}{\tan{\left(\frac{x}{2}\right)}}\left(\frac{\mathrm{d}}{\mathrm{d}x}\tan{\left(\frac{x}{2}\right)}\right) \;\cdots\;u=\tan{\left(\frac{x}{2}\right)},f=\ln{\left(u\right)},\frac{\mathrm{d}f}{\mathrm{d}x}=\frac{\mathrm{d}f}{\mathrm{d}u}\frac{\mathrm{d}u}{\mathrm{d}x}=\frac{1}{u}\frac{\mathrm{d}u}{\mathrm{d}x} \\&=&\frac{1}{ \frac{\sin{\left(\frac{x}{2}\right)}}{\cos{\left(\frac{x}{2}\right)}} } \left(\frac{\mathrm{d}}{\mathrm{d}x} \frac{\sin{\left(\frac{x}{2}\right)}}{\cos{\left(\frac{x}{2}\right)}} \right) \\&=&\frac{\cos{\left(\frac{x}{2}\right)}}{\sin{\left(\frac{x}{2}\right)}} \left(\frac{\mathrm{d}}{\mathrm{d}x} \sin{\left(\frac{x}{2}\right)}\cos^{-1}{\left(\frac{x}{2}\right)} \right) \\&=&\frac{\cos{\left(\frac{x}{2}\right)}}{\sin{\left(\frac{x}{2}\right)}} \left\{ \left(\frac{\mathrm{d}}{\mathrm{d}x}\sin{\left(\frac{x}{2}\right)}\right)\cos^{-1}{\left(\frac{x}{2}\right)} +\sin{\left(\frac{x}{2}\right)}\left(\frac{\mathrm{d}}{\mathrm{d}x}\cos^{-1}{\left(\frac{x}{2}\right)}\right) \right\} \\&=&\frac{\cos{\left(\frac{x}{2}\right)}}{\sin{\left(\frac{x}{2}\right)}} \left[ \left(\cancel{\cos{\left(\frac{x}{2}\right)}}\cdot\frac{1}{2}\right)\cancel{\cos^{-1}{\left(\frac{x}{2}\right)}} +\sin{\left(\frac{x}{2}\right)}\left\{-\cos^{-2}{\left(\frac{x}{2}\right)}\left(-\sin{\left(\frac{x}{2}\right)}\cdot\frac{1}{2}\right)\right\} \right] \\&=&\frac{\cos{\left(\frac{x}{2}\right)}}{\sin{\left(\frac{x}{2}\right)}} \cdot\frac{1}{2}\left\{ 1+\sin^2{\left(\frac{x}{2}\right)}\cos^{-2}{\left(\frac{x}{2}\right)} \right\} \\&=&\frac{1}{2}\left( \frac{\cos{\left(\frac{x}{2}\right)}}{\sin{\left(\frac{x}{2}\right)}} +\frac{\cancel{\cos{\left(\frac{x}{2}\right)}}}{\cancel{\sin{\left(\frac{x}{2}\right)}}}\sin^{\cancel{2}1}{\left(\frac{x}{2}\right)}\cos^{\cancel{-2}-1}{\left(\frac{x}{2}\right)} \right) \\&=&\frac{1}{2}\left( \frac{\cos{\left(\frac{x}{2}\right)}}{\sin{\left(\frac{x}{2}\right)}} +\frac{\sin{\left(\frac{x}{2}\right)}}{\cos{\left(\frac{x}{2}\right)}} \right) \\&=&\frac{1}{2} \frac{ \cos^2{\left(\frac{x}{2}\right)}+\sin^2{\left(\frac{x}{2}\right)} }{\sin{\left(\frac{x}{2}\right)}\cos{\left(\frac{x}{2}\right)}} \\&=& \frac{1}{2\sin{\left(\frac{x}{2}\right)}\cos{\left(\frac{x}{2}\right)}} \\&=&\frac{1}{\sin{(x)}}\;\cdots\;\sin{(x)}=2\sin{\left(\frac{x}{2}\right)}\cos{\left(\frac{x}{2}\right)} \\\; \\\frac{\mathrm{d}^2}{\mathrm{d}x^2} \ln{\left(\tan{\left(\frac{x}{2}\right)}\right)} &=&\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{1}{\sin{(x)}}\right) \\&=&-\frac{1}{\sin^2{(x)}}\left\{\frac{\mathrm{d}}{\mathrm{d}x}\sin{(x)}\right\} \\&=&-\frac{1}{\sin^2{(x)}}\cos{(x)} \\&=&-\frac{\cos{(x)}}{\sin^2{(x)}} \\\; \\\frac{\mathrm{d}^3}{\mathrm{d}x^3} \ln{\left(\tan{\left(\frac{x}{2}\right)}\right)} &=&\frac{\mathrm{d}}{\mathrm{d}x}\left(-\frac{\cos{(x)}}{\sin^2{(x)}}\right) \\&=&-\frac{\mathrm{d}}{\mathrm{d}x}\cos{(x)}\sin^{-2}{(x)} \\&=&-\left\{ \left( \frac{\mathrm{d}}{\mathrm{d}x}\cos{(x)}\right) \sin^{-2}{(x)} + \cos{(x)}\left(\frac{\mathrm{d}}{\mathrm{d}x}\sin^{-2}{(x)}\right) \right\} \\&=&-\left\{ \left( -\sin{(x)}\right) \sin^{-2}{(x)} + \cos{(x)}\left(-2\sin^{-3}{(x)}\cos{(x)}\right) \right\} \\&=&-\left\{ -\sin^{-1}{(x)}-2\sin^{-3}{(x)}\cos^2{(x)} \right\} \\&=&\sin^{-1}{(x)}+2\sin^{-3}{(x)}\cos^2{(x)} \\&=&\frac{1}{\sin{(x)}}+\frac{2\cos^2{(x)}}{\sin^3{(x)}} \\\; \\\frac{\mathrm{d}^4}{\mathrm{d}x^4} \ln{\left(\tan{\left(\frac{x}{2}\right)}\right)} &=&\frac{\mathrm{d}}{\mathrm{d}x}\left( \frac{1}{\sin{(x)}}+\frac{2\cos^2{(x)}}{\sin^3{(x)}} \right) \\&=&\frac{\mathrm{d}}{\mathrm{d}x}\sin^{-1}{(x)} +2\frac{\mathrm{d}}{\mathrm{d}x}\cos^2{(x)}\sin^{-3}{(x)} \\&=& -\sin^{-2}{(x)}\cos{(x)} +2\left\{ \left(\frac{\mathrm{d}}{\mathrm{d}x}\cos^2{(x)}\right)\sin^{-3}{(x)} +\cos^2{(x)}\left(\frac{\mathrm{d}}{\mathrm{d}x}\sin^{-3}{(x)}\right) \right\} \\&=& -\sin^{-2}{(x)}\cos{(x)} +2\left[ \left\{2\cos{(x)}\left(-\sin{(x)}\right)\right\}\sin^{-3}{(x)} +\cos^2{(x)}\left(-3\sin^{-4}{(x)}\cos{(x)}\right) \right] \\&=&-\frac{\cos{(x)}}{\sin^{2}{(x)}} +2\left[ -2\frac{\cos{(x)}}{\sin^{2}{(x)}} -3\frac{\cos^3{(x)}}{\sin^{4}{(x)}} \right] \\&=&-\frac{\cos{(x)}}{\sin^{2}{(x)}} -4\frac{\cos{(x)}}{\sin^{2}{(x)}} -6\frac{\cos^3{(x)}}{\sin^{4}{(x)}} \\&=&-5\frac{\cos{(x)}}{\sin^{2}{(x)}} -6\frac{\cos^3{(x)}}{\sin^{4}{(x)}} \\\; \\\frac{\mathrm{d}^5}{\mathrm{d}x^5} \ln{\left(\tan{\left(\frac{x}{2}\right)}\right)} &=&\frac{\mathrm{d}}{\mathrm{d}x}\left( -5\frac{\cos{(x)}}{\sin^{2}{(x)}} -6\frac{\cos^3{(x)}}{\sin^{4}{(x)}} \right) \\&=&-5\frac{\mathrm{d}}{\mathrm{d}x}\cos{(x)}\sin^{-2}{(x)} -6\frac{\mathrm{d}}{\mathrm{d}x}\cos^3{(x)}\sin^{-4}{(x)} \\&=&-5\left\{ \left(\frac{\mathrm{d}}{\mathrm{d}x}\cos{(x)}\right)\sin^{-2}{(x)} +\cos{(x)}\frac{\mathrm{d}}{\mathrm{d}x}\sin^{-2}{(x)} \right\} -6\left\{ \left(\frac{\mathrm{d}}{\mathrm{d}x}\cos^3{(x)}\right)\sin^{-4}{(x)} +\cos^3{(x)}\frac{\mathrm{d}}{\mathrm{d}x}\sin^{-4}{(x)} \right\} \\&=&-5\left\{ \left(-\sin{(x)}\right)\sin^{-2}{(x)} +\cos{(x)}\left(-2\sin^{-3}{(x)}\cos{(x)}\right) \right\} -6\left\{ \left(-3\cos^2{(x)}\sin{(x)}\right)\sin^{-4}{(x)} +\cos^3{(x)}\left(-4\sin^{-5}{(x)}\cos{(x)}\right) \right\} \\&=&5\frac{1}{\sin{(x)}} +28\frac{\cos^2{(x)}}{\sin^{3}{(x)}} +24\frac{\cos^4{(x)}}{\sin^{5}{(x)}} \end{eqnarray}$$

\(x=\frac{\pi}{2}\)でのテーラー展開を求めておく

$$\begin{eqnarray} \ln{\left(\tan{\left(\frac{x}{2}\right)}\right)} &=& \frac{1}{0!}\left[\left. \frac{\mathrm{d}^0}{\mathrm{d}x^0} \ln{\left(\tan{\left(\frac{x}{2}\right)}\right)} \right|_{x=\frac{\pi}{2}}\right]\left(x-\frac{\pi}{2}\right)^0 \\&&+\frac{1}{1!}\left[\left. \frac{\mathrm{d}^1}{\mathrm{d}x^1} \ln{\left(\tan{\left(\frac{x}{2}\right)}\right)} \right|_{x=\frac{\pi}{2}}\right]\left(x-\frac{\pi}{2}\right)^1 \\&&+\frac{1}{2!}\left[\left. \frac{\mathrm{d}^2}{\mathrm{d}x^2} \ln{\left(\tan{\left(\frac{x}{2}\right)}\right)} \right|_{x=\frac{\pi}{2}}\right]\left(x-\frac{\pi}{2}\right)^2 \\&&+\frac{1}{3!}\left[\left. \frac{\mathrm{d}^3}{\mathrm{d}x^3} \ln{\left(\tan{\left(\frac{x}{2}\right)}\right)} \right|_{x=\frac{\pi}{2}}\right]\left(x-\frac{\pi}{2}\right)^3 \\&&+\frac{1}{4!}\left[\left. \frac{\mathrm{d}^4}{\mathrm{d}x^4} \ln{\left(\tan{\left(\frac{x}{2}\right)}\right)} \right|_{x=\frac{\pi}{2}}\right]\left(x-\frac{\pi}{2}\right)^4 \\&&+\frac{1}{5!}\left[\left. \frac{\mathrm{d}^5}{\mathrm{d}x^5} \ln{\left(\tan{\left(\frac{x}{2}\right)}\right)} \right|_{x=\frac{\pi}{2}}\right]\left(x-\frac{\pi}{2}\right)^5 \\&&+\cdots \\&=& \frac{1}{1} \left[ \ln{\left(\tan{\left(\frac{\pi}{4}\right)}\right)} \right]\left(x-\frac{\pi}{2}\right)^0 \\&&+\frac{1}{1}\left[ \frac{1}{\sin{\left(\frac{\pi}{2}\right)}} \right]\left(x-\frac{\pi}{2}\right)^1 \\&&+\frac{1}{2}\left[ -\frac{\cos{\left(\frac{\pi}{2}\right)}}{\sin^2{\left(\frac{\pi}{2}\right)}} \right]\left(x-\frac{\pi}{2}\right)^2 \\&&+\frac{1}{6}\left[ \frac{1}{\sin{\left(\frac{\pi}{2}\right)}} +\frac{2\cos^2{\left(\frac{\pi}{2}\right)}}{\sin^3{\left(\frac{\pi}{2}\right)}} \right]\left(x-\frac{\pi}{2}\right)^3 \\&&+\frac{1}{24}\left[ -5\frac{\cos{\left(\frac{\pi}{2}\right)}}{\sin^{2}{\left(\frac{\pi}{2}\right)}} -6\frac{\cos^3{\left(\frac{\pi}{2}\right)}}{\sin^{4}{\left(\frac{\pi}{2}\right)}} \right]\left(x-\frac{\pi}{2}\right)^4 \\&&+\frac{1}{120}\left[ 5\frac{1}{\sin{\left(\frac{\pi}{2}\right)}} +28\frac{\cos^2{\left(\frac{\pi}{2}\right)}}{\sin^{3}{\left(\frac{\pi}{2}\right)}} +24\frac{\cos^4{\left(\frac{\pi}{2}\right)}}{\sin^{5}{\left(\frac{\pi}{2}\right)}} \right]\left(x-\frac{\pi}{2}\right)^5 \\&&+\cdots \\&=& \left[0\right]\cdot 1 \\&&+\left[ \frac{1}{1} \right]\left(x-\frac{\pi}{2}\right) \\&&+\frac{1}{2}\left[ -\frac{0}{1} \right]\left(x-\frac{\pi}{2}\right)^2 \\&&+\frac{1}{6}\left[ \frac{1}{1} +\frac{2\cdot0}{1} \right]\left(x-\frac{\pi}{2}\right)^3 \\&&+\frac{1}{24}\left[ -5\frac{0}{1} -6\frac{0}{1} \right]\left(x-\frac{\pi}{2}\right)^4 \\&&+\frac{1}{120}\left[ 5\frac{1}{1} +28\frac{0}{1} +24\frac{0}{1} \right]\left(x-\frac{\pi}{2}\right)^5 \\&&+\cdots \\&=& \left(x-\frac{\pi}{2}\right) +\frac{1}{6}\left(x-\frac{\pi}{2}\right)^3 +\frac{1}{24}\left(x-\frac{\pi}{2}\right)^5+\cdots \end{eqnarray}$$

\(\lim_{x\rightarrow \frac{\pi}{2}}\ln{\left(\tan{\left(\frac{x}{2}\right)}\right)}\)を求める

$$\begin{eqnarray} \\\lim_{x\rightarrow \frac{\pi}{2}}\ln{\left(\tan{\left(\frac{x}{2}\right)}\right)} &=& \lim_{x\rightarrow \frac{\pi}{2}}\left[ \left(x-\frac{\pi}{2}\right)+\frac{1}{6}\left(x-\frac{\pi}{2}\right)^3+\frac{1}{24}\left(x-\frac{\pi}{2}\right)^5+\cdots \right] \\&=&0 \end{eqnarray}$$

0 件のコメント:

コメントを投稿