間違いしかありません.コメントにてご指摘いただければ幸いです(気が付いた点を特に断りなく頻繁に書き直していますのでご注意ください).

lim x→π/2 ln(tan(x/2)) を求める

limxπ2ln(tan(x2))を求める

高階の微分を求めておく

一階から順に求めておく. ddxln(tan(x2))=1tan(x2)(ddxtan(x2))u=tan(x2),f=ln(u),dfdx=dfdududx=1ududx=1sin(x2)cos(x2)(ddxsin(x2)cos(x2))=cos(x2)sin(x2)(ddxsin(x2)cos1(x2))=cos(x2)sin(x2){(ddxsin(x2))cos1(x2)+sin(x2)(ddxcos1(x2))}=cos(x2)sin(x2)[(cos(x2)12)cos1(x2)+sin(x2){cos2(x2)(sin(x2)12)}]=cos(x2)sin(x2)12{1+sin2(x2)cos2(x2)}=12(cos(x2)sin(x2)+cos(x2)sin(x2)sin21(x2)cos21(x2))=12(cos(x2)sin(x2)+sin(x2)cos(x2))=12cos2(x2)+sin2(x2)sin(x2)cos(x2)=12sin(x2)cos(x2)=1sin(x)sin(x)=2sin(x2)cos(x2)d2dx2ln(tan(x2))=ddx(1sin(x))=1sin2(x){ddxsin(x)}=1sin2(x)cos(x)=cos(x)sin2(x)d3dx3ln(tan(x2))=ddx(cos(x)sin2(x))=ddxcos(x)sin2(x)={(ddxcos(x))sin2(x)+cos(x)(ddxsin2(x))}={(sin(x))sin2(x)+cos(x)(2sin3(x)cos(x))}={sin1(x)2sin3(x)cos2(x)}=sin1(x)+2sin3(x)cos2(x)=1sin(x)+2cos2(x)sin3(x)d4dx4ln(tan(x2))=ddx(1sin(x)+2cos2(x)sin3(x))=ddxsin1(x)+2ddxcos2(x)sin3(x)=sin2(x)cos(x)+2{(ddxcos2(x))sin3(x)+cos2(x)(ddxsin3(x))}=sin2(x)cos(x)+2[{2cos(x)(sin(x))}sin3(x)+cos2(x)(3sin4(x)cos(x))]=cos(x)sin2(x)+2[2cos(x)sin2(x)3cos3(x)sin4(x)]=cos(x)sin2(x)4cos(x)sin2(x)6cos3(x)sin4(x)=5cos(x)sin2(x)6cos3(x)sin4(x)d5dx5ln(tan(x2))=ddx(5cos(x)sin2(x)6cos3(x)sin4(x))=5ddxcos(x)sin2(x)6ddxcos3(x)sin4(x)=5{(ddxcos(x))sin2(x)+cos(x)ddxsin2(x)}6{(ddxcos3(x))sin4(x)+cos3(x)ddxsin4(x)}=5{(sin(x))sin2(x)+cos(x)(2sin3(x)cos(x))}6{(3cos2(x)sin(x))sin4(x)+cos3(x)(4sin5(x)cos(x))}=51sin(x)+28cos2(x)sin3(x)+24cos4(x)sin5(x)

x=π2でのテーラー展開を求めておく

ln(tan(x2))=10![d0dx0ln(tan(x2))|x=π2](xπ2)0+11![d1dx1ln(tan(x2))|x=π2](xπ2)1+12![d2dx2ln(tan(x2))|x=π2](xπ2)2+13![d3dx3ln(tan(x2))|x=π2](xπ2)3+14![d4dx4ln(tan(x2))|x=π2](xπ2)4+15![d5dx5ln(tan(x2))|x=π2](xπ2)5+=11[ln(tan(π4))](xπ2)0+11[1sin(π2)](xπ2)1+12[cos(π2)sin2(π2)](xπ2)2+16[1sin(π2)+2cos2(π2)sin3(π2)](xπ2)3+124[5cos(π2)sin2(π2)6cos3(π2)sin4(π2)](xπ2)4+1120[51sin(π2)+28cos2(π2)sin3(π2)+24cos4(π2)sin5(π2)](xπ2)5+=[0]1+[11](xπ2)+12[01](xπ2)2+16[11+201](xπ2)3+124[501601](xπ2)4+1120[511+2801+2401](xπ2)5+=(xπ2)+16(xπ2)3+124(xπ2)5+

limxπ2ln(tan(x2))を求める

limxπ2ln(tan(x2))=limxπ2[(xπ2)+16(xπ2)3+124(xπ2)5+]=0

0 件のコメント:

コメントを投稿