間違いしかありません.コメントにてご指摘いただければ幸いです(気が付いた点を特に断りなく頻繁に書き直していますのでご注意ください).

独立なガウス分布に従う誤差を含む回帰モデルがn個の同時確率を考える

独立なガウス分布\(N(\mu_i,\sigma_i^2)\)に従う誤差\(\epsilon_i\)を含む回帰モデル\(y_i=\beta x_i+\alpha+\epsilon_i\)が\(n\)個の同時確率を考える

準備

\begin{eqnarray} \bar{x}&=&\frac{1}{n}\sum_{i=1}^n x_i \\\bar{y}&=&\frac{1}{n}\sum_{i=1}^n y_i \\\sum_{i=1}^n\left(x_i-\bar{x}\right)\left(y_i-\bar{y}\right) &=&\sum_{i=1}^n\left(x_iy_i-x_i\bar{y}-\bar{x}y_i+\bar{x}\bar{y}\right) \\&=&\sum_{i=1}^nx_iy_i-\bar{y}\sum_{i=1}^nx_i-\bar{x}\sum_{i=1}^ny_i+\bar{x}\bar{y}\sum_{i=1}^n1 \\&=&\sum_{i=1}^nx_iy_i-\bar{y}n\bar{x}-\bar{x}n\bar{y}+\bar{x}\bar{y}n \\&=&\sum_{i=1}^nx_iy_i-2n\bar{x}\bar{y}+n\bar{x}\bar{y} \\&=&\sum_{i=1}^nx_iy_i-n\bar{x}\bar{y}\;\cdots\;\href{https://shikitenkai.blogspot.com/2020/10/sxy.html}{S_{xy}の式展開} \\\sum_{i=1}^n(x_i-\bar{x})^2 &=&\sum_{i=1}^n(x_i^2-2x_i\bar{x}+\bar{x}^2) \\&=&\sum_{i=1}^nx_i^2-2\bar{x}\sum_{i=1}^nx_i+\bar{x}^2\sum_{i=1}^n1 \\&=&\sum_{i=1}^nx_i^2-2\bar{x}n\bar{x}+\bar{x}^2n \\&=&\sum_{i=1}^nx_i^2-2n\bar{x}^2+n\bar{x}^2 \\&=&\sum_{i=1}^nx_i^2-n\bar{x}^2\;\cdots\;\href{https://shikitenkai.blogspot.com/2020/10/sxx.html}{S_{xx}の式展開} \end{eqnarray}

同時確率を考える

\begin{eqnarray} p(\epsilon_1,\epsilon_2,\cdots,\epsilon_n) &=&\frac{1}{\sqrt{2\pi{\sigma_1}^2}}e^{-\frac{\left(\epsilon_1-\mu_1\right)^2}{2{\sigma_1}^2}} \times\frac{1}{\sqrt{2\pi{\sigma_2}^2}}e^{-\frac{\left(\epsilon_2-\mu_2\right)^2}{2{\sigma_2}^2}} \times\cdots\times\frac{1}{\sqrt{2\pi{\sigma_n}^2}}e^{-\frac{\left(\epsilon_n-\mu_n\right)^2}{2{\sigma_n}^2}} \\&=&\left(\prod_{i=1}^n{\frac{1}{\sqrt{2\pi{\sigma_i}^2}}}\right) \left(\prod_{i=1}^n{e^{-\frac{\left(\epsilon_i-\mu_i\right)^2}{2{\sigma_i}^2}}}\right) \\&=&\left(\prod_{i=1}^n{\left(2\pi{\sigma_i}^2\right)^{-\frac{1}{2}}}\right) \left(\prod_{i=1}^n{e^{-\frac{\left(y_i-\beta x_i-\alpha -\mu_i\right)^2}{2{\sigma_i}^2}}}\right) \;\cdots\;y_i=\beta x_i+\alpha+\epsilon_i,\;\epsilon_i=y_i-\beta x_i-\alpha \end{eqnarray}

負の対数によって情報量を求める

\begin{eqnarray} \\-\ln(p)&=&-\ln\left( \left(\prod_{i=1}^n{\left(2\pi{\sigma_i}^2\right)^{-\frac{1}{2}}}\right) \left(\prod_{i=1}^n{e^{-\frac{1}{2{\sigma_i}^2}\left(y_i-\beta x_i-\alpha -\mu_i\right)^2}}\right) \right) \\&=&-\ln\left( \prod_{i=1}^n{\left(2\pi{\sigma_i}^2\right)^{-\frac{1}{2}}} \right) -\ln\left( \prod_{i=1}^n{e^{-\frac{1}{2{\sigma_i}^2}\left(y_i-\beta x_i-\alpha -\mu_i\right)^2}} \right) \\&=&-\sum_{i=1}^n\ln\left( {\left(2\pi{\sigma_i}^2\right)^{-\frac{1}{2}}} \right) -\sum_{i=1}^n\ln\left( {e^{-\frac{1}{2{\sigma_i}^2}\left(y_i-\beta x_i-\alpha -\mu_i\right)^2}} \right) \\&=&-\sum_{i=1}^n \left\{-\frac{1}{2}\ln\left( 2\pi{\sigma_i}^2 \right) \right\} -\sum_{i=1}^n\left(-\frac{1}{2{\sigma_i}^2}\left(y_i-\beta x_i-\alpha -\mu_i\right)^2 \right) \\&=&\sum_{i=1}^n \left\{\frac{1}{2}\ln\left( 2\pi{\sigma_i}^2 \right) \right\} +\sum_{i=1}^n\frac{1}{2{\sigma_i}^2}\left(y_i-\beta x_i-\alpha -\mu_i\right)^2 \\&=&\sum_{i=1}^n \left\{\frac{1}{2}\ln\left( 2\pi{\sigma_i}^2 \right) \right\} +\sum_{i=1}^n\frac{1}{2{\sigma_i}^2}\left( y_i^2 +\beta^2x_i^2 +\alpha^2 +\mu_i^2 -2\beta x_i y_i -2\alpha y_i -2y_i \mu_i +2\alpha \beta x_i +2\beta x_i\mu_i +2\alpha \mu_i \right) \end{eqnarray}

回帰モデルの係数で微分する

\(\beta\)について. \begin{eqnarray} \frac{\partial}{\partial \beta}\left(-\ln(p)\right)&=&0 +\sum_{i=1}^n\frac{1}{\cancel{2}{\sigma_i}^2}\left(0+\cancel{2}{\beta}x_i^2+0+0-\cancel{2}x_i y_i-0-0 +\cancel{2}\alpha x_i+\cancel{2}x_i \mu_i+0\right) \\&=&\sum_{i=1}^n\frac{1}{{\sigma_i}^2}\left({\beta}x_i^2-x_iy_i+\alpha x_i+x_i\mu_i\right) \\&=&\beta\sum_{i=1}^n\frac{x_i^2}{{\sigma_i}^2} -\sum_{i=1}^n\frac{x_i\left(y_i-\alpha-\mu_i\right)}{{\sigma_i}^2} \end{eqnarray} \(\alpha\)について. \begin{eqnarray} \frac{\partial}{\partial \alpha}\left(-\ln(p)\right)&=&0 +\sum_{i=1}^n\frac{1}{\cancel{2}{\sigma_i}^2}\left(0+0+\cancel{2}\alpha+0-0-\cancel{2}y_i -0 +\cancel{2}\beta x_i+0+\cancel{2}\mu_i\right) \\&=&\sum_{i=1}^n\frac{1}{{\sigma_i}^2}\left(\alpha -y_i+\beta x_i+\mu_i\right) \\&=&\alpha \sum_{i=1}^n\frac{1}{{\sigma_i}^2}-\sum_{i=1}^n\frac{y_i-\beta x_i-\mu_i}{{\sigma_i}^2} \end{eqnarray}

微分が0となる\(\hat{\alpha},\hat{\beta}\),つまり極値となるパラメータを求める

\(\hat{\beta}\)について. \begin{eqnarray} \\0&=&\frac{\partial}{\partial \beta}\left(-\ln(p)\right) \\&=&\hat{\beta}\sum_{i=1}^n\frac{x_i^2}{{\sigma_i}^2} -\sum_{i=1}^n\frac{x_i\left(y_i-\hat{\alpha}-\mu_i\right)}{{\sigma_i}^2} \\\hat{\beta}\sum_{i=1}^n\frac{x_i^2}{{\sigma_i}^2}&=& \sum_{i=1}^n\frac{x_i\left(y_i-\hat{\alpha}-\mu_i\right)}{{\sigma_i}^2} \\\hat{\beta}&=&\frac{ \sum_{i=1}^n\frac{x_i\left(y_i-\hat{\alpha}-\mu_i\right)}{{\sigma_i}^2} }{\sum_{i=1}^n\frac{x_i^2}{{\sigma_i}^2}} \end{eqnarray} \(\hat{\alpha}\)について. \begin{eqnarray} \\0&=&\frac{\partial}{\partial \alpha}\left(-\ln(p)\right) \\&=&\hat{\alpha}\sum_{i=1}^n\frac{1}{{\sigma_i}^2}-\sum_{i=1}^n\frac{y_i-\hat{\beta}x_i-\mu_i}{{\sigma_i}^2} \\\hat{\alpha}\sum_{i=1}^n\frac{1}{{\sigma_i}^2}&=&\sum_{i=1}^n\frac{y_i-\hat{\beta}x_i-\mu_i}{{\sigma_i}^2} \\\hat{\alpha}&=&\frac{\sum_{i=1}^n\frac{y_i-\hat{\beta}x_i-\mu_i}{{\sigma_i}^2}} {\sum_{i=1}^n\frac{1}{{\sigma_i}^2}} \end{eqnarray}

誤差の発生が全て同一モデル\(\epsilon_i \sim N(0,\sigma^2)\)から発生しているとする

\(\hat{\alpha}\)について. \begin{eqnarray} \hat{\alpha}&=&\frac{\frac{1}{{\sigma}^2} \sum_{i=1}^n \left(y_i-\hat{\beta}x_i-0\right) }{\frac{n}{{\sigma}^2}} \;\cdots\;\epsilon_i \sim N(0,\sigma^2) \\&=&\frac{1}{n}\sum_{i=1}^n \left(y_i-\hat{\beta}x_i\right) \\&=&\frac{\sum_{i=1}^n y_i}{n}-\hat{\beta}\frac{\sum_{i=1}^n x_i}{n} \\&=&\bar{y}-\hat{\beta}\bar{x} \end{eqnarray} \(\hat{\beta}\)について. \begin{eqnarray} \\\hat{\beta}&=&\frac{ \frac{1}{{\sigma}^2} \sum_{i=1}^nx_i\left(y_i-\hat{\alpha}-0\right) }{ \frac{1}{{\sigma}^2}\sum_{i=1}^nx_i^2 } \;\cdots\;\epsilon_i \sim N(0,\sigma^2) \\&=&\frac{ \sum_{i=1}^nx_i y_i-\hat{\alpha}\sum_{i=1}^nx_i }{ \sum_{i=1}^nx_i^2 } \\&=&\frac{\sum_{i=1}^nx_i y_i-\hat{\alpha}n\bar{x}}{\sum_{i=1}^nx_i^2} \\&=&\frac{\sum_{i=1}^nx_i y_i-\left(\bar{y}-\hat{\beta}\bar{x}\right)n\bar{x}}{\sum_{i=1}^nx_i^2} \;\cdots\;\hat{\alpha}=\bar{y}-\hat{\beta}\bar{x},\;\hat{\alpha}での結果を代入する \\&=&\frac{\sum_{i=1}^nx_i y_i-n\bar{x}\bar{y}+\hat{\beta}n\bar{x}^2}{\sum_{i=1}^nx_i^2} \\\hat{\beta}-\frac{\hat{\beta}n\bar{x}^2}{\sum_{i=1}^nx_i^2} &=&\frac{\sum_{i=1}^nx_i y_i-n\bar{x}\bar{y}}{\sum_{i=1}^nx_i^2} \\\hat{\beta}\left(\frac{\sum_{i=1}^nx_i^2-n\bar{x}^2}{\cancel{\sum_{i=1}^nx_i^2}}\right) &=&\frac{\sum_{i=1}^nx_i y_i-n\bar{x}\bar{y}}{\cancel{\sum_{i=1}^nx_i^2}} \\\hat{\beta}&=&\frac{\sum_{i=1}^nx_i y_i-n\bar{x}\bar{y}}{\sum_{i=1}^nx_i^2-n\bar{x}^2} \\&=&\frac{\sum_{i=1}^n\left(x_i-\bar{x}\right)\left(y_i-\bar{y}\right)}{\sum_{i=1}^n(x_i-\bar{x})^2}\;\cdots\;準備 より \end{eqnarray}

まとめ

\begin{cases}\begin{eqnarray} \hat{\beta}&=&\frac{\sum_{i=1}^nx_i y_i-n\bar{x}\bar{y}}{\sum_{i=1}^nx_i^2-n\bar{x}^2}=\frac{\sum_{i=1}^n\left(x_i-\bar{x}\right)\left(y_i-\bar{y}\right)}{\sum_{i=1}^n(x_i-\bar{x})^2} \\\hat{\alpha}&=&\bar{y}-\hat{\beta}\bar{x} \end{eqnarray}\end{cases}

0 件のコメント:

コメントを投稿