ラプラス変換
$$\begin{eqnarray}
\mathfrak{L}\left[ {f\left( t \right)} \right]
&=&\int_0^\infty {f\left( t \right){e^{–st}}}\mathrm{d}t
\end{eqnarray}$$
\(e^{at}\cos{\left(b t\right)}\)のラプラス変換
$$\begin{eqnarray}
f\left( t \right)
&=& e^{at}\cos{\left(b t\right)}
\\\mathfrak{L}\left[ {f\left( t \right)} \right]
&=&\int_0^\infty {f\left( t \right){e^{–st}}}\mathrm{d}t
\\&=&\int_0^\infty {e^{at}\cos{\left(b t\right)}\;{e^{–st}}}\mathrm{d}t
\\&=&\int_0^\infty {
e^{-st+at}\cos{\left(b t\right)}
}\mathrm{d}t\;\ldots\;e^Ae^B=e^{A+B}
\\&=&\int_0^\infty {
e^{-\left(s-a\right)t}\cos{\left(b t\right)}
}\mathrm{d}t
\\&=&\int_0^\infty {
e^{-ut}\cos{\left(b t\right)}
}\mathrm{d}t\;\ldots\;u=s-a
\\&=&\mathfrak{L}\left[ {\cos{\left(b t\right)}} \right]\;\ldots\;uをsとみなして利用する
\\&=&\frac{u}{u^2+b^2}\;\ldots\;\href{https://shikitenkai.blogspot.com/2021/05/cos.html}{\mathfrak{L}\left[ {\cos{\left(\omega t\right)}} \right]=\frac{s}{s^2+\omega^2}}
\\&=&\frac{s-a}{\left(s-a\right)^2+b^2}
\end{eqnarray}$$
0 件のコメント:
コメントを投稿