間違いしかありません.コメントにてご指摘いただければ幸いです(気が付いた点を特に断りなく頻繁に書き直していますのでご注意ください).

バネマスダンパー系,運動方程式,ラプラス変換,逆ラプラス変換,cos凾数

バネマスダンパー系

運動方程式

$$\begin{eqnarray} m\ddot{x} &+&c\dot{x} &+&kx &=&F\cos{\left(\omega_f t\right)} \\ \frac{\mathrm{d^2}x}{\mathrm{d^2}t} &+&\frac{c}{m}\frac{\mathrm{d}x}{\mathrm{d}t} &+&\frac{k}{m}x &=&\frac{F}{m}\cos{\left(\omega_f t\right)} \\ \frac{\mathrm{d^2}x}{\mathrm{d^2}t} &+&2\gamma\frac{\mathrm{d}x}{\mathrm{d}t} &+&\omega_0^2x &=&\frac{F}{m}\cos{\left(\omega_f t\right)} \;\cdots\;\gamma=\frac{c}{2m},\;\omega_0^2=\frac{k}{m} \end{eqnarray}$$

ラプラス変換

$$\begin{eqnarray} \mathfrak{L}\left[ \frac{\mathrm{d^2}x}{\mathrm{d^2}t} \right.&+&\left.2\gamma\frac{\mathrm{d}x}{\mathrm{d}t} \right.&+&\left.\omega_0^2x \right]&=\mathfrak{L}\left[\frac{F}{m}\cos{\left(\omega_f t\right)}\right] \\\mathfrak{L}\left[ \frac{\mathrm{d^2}x}{\mathrm{d^2}t} \right] &+&\mathfrak{L}\left[ 2\gamma\frac{\mathrm{d}x}{\mathrm{d}t} \right] &+&\mathfrak{L}\left[ \omega_0^2 x\right] &=\mathfrak{L}\left[\frac{F}{m}\cos{\left(\omega_f t\right)}\right] \\\mathfrak{L}\left[ \frac{\mathrm{d^2}x}{\mathrm{d^2}t} \right] &+&2\gamma\mathfrak{L}\left[ \frac{\mathrm{d}x}{\mathrm{d}t} \right] &+&\omega_0^2\mathfrak{L}\left[ x\right] &=\mathfrak{L}\left[\frac{F}{m}\cos{\left(\omega_f t\right)}\right] \\ s^2X-sx_0 -v_0 &+&2\gamma\left(sX-x_0 \right) &+&\omega_0^2X &=\frac{F}{m}\frac{s}{s^2+\omega_f^2} \\ \\&&&&&\;\ldots\;\mathfrak{L}\left[x\right]=X \\&&&&&\;\ldots\;\href{https://shikitenkai.blogspot.com/2021/04/fracmathrmdfmathrmdt.html}{\mathfrak{L}\left[ \frac{\mathrm{d}x}{\mathrm{d}t}\right] =s^2X-x_0,\;x_0=x(0)} \\&&&&&\;\ldots\;\href{https://shikitenkai.blogspot.com/2021/04/blog-post_62.html}{\mathfrak{L}\left[ \frac{\mathrm{d^2}x}{\mathrm{d^2}t}\right] =s^2X-sx_0 -v_0,\;v_0=x'(0)} \\&&&&&\;\ldots\;\href{https://shikitenkai.blogspot.com/2021/05/cos.html}{\mathfrak{L}\left[\cos{\left(\omega t\right)}\right]=\frac{s}{s^2+\omega_f^2}} \end{eqnarray}$$

Xについて解く

$$\begin{eqnarray} s^2X+2\gamma Xs+\omega_0^2X &=& sx_0 +v_0 +2\gamma x_0 +\frac{F}{m}\frac{s}{s^2+\omega_f^2} \\ \left(s^2+2\gamma s+\omega_0^2\right)X &=& sx_0 +v_0 +2\gamma x_0 +\frac{F}{m}\frac{s}{s^2+\omega_f^2} \\ X&=&\frac{sx_0 +v_0 +2\gamma x_0 }{s^2+2\gamma s+\omega_0^2}+\frac{F}{m}\frac{1}{s^2+2\gamma s+\omega_0^2}\frac{s}{s^2+\omega_f^2} \\&=&\frac{sx_0 +v_0 +2\gamma x_0 }{\left(s-\lambda_1\right)\left(s-\lambda_2\right)}+\frac{F}{m}\frac{1}{\left(s-\lambda_1\right)\left(s-\lambda_2\right)}\frac{s}{s^2+\omega_f^2} \end{eqnarray}$$

部分分数分解 準備

$$\begin{eqnarray} \\X&=&\frac{sx_0 +v_0 +2\gamma x_0 }{\left(s-\lambda_1\right)\left(s-\lambda_2\right)}+\frac{F}{m}\frac{1}{\left(s-\lambda_1\right)\left(s-\lambda_2\right)}\frac{s}{s^2+\omega_f^2} \\&=&\frac{C_1 }{s-\lambda_1}+\frac{C_2 }{s-\lambda_2} +\frac{F}{m}\left\{ \frac{C_3}{s-\lambda_1} +\frac{C_4}{s-\lambda_2} +\frac{C_5s+C_6}{s^2+\omega_f^2} \right\} \\&=&\frac{C_1 \left(s-\lambda_2\right)+C_2 \left(s-\lambda_1\right)}{\left(s-\lambda_1\right)\left(s-\lambda_2\right)} \\&&+\frac{F}{m}\left\{ \frac{\small{ C_3\left(s-\lambda_2\right)\left(s^2+\omega_f^2\right)+C_4\left(s-\lambda_1\right)\left(s^2+\omega_f^2\right)+\left(C_5s+C_6\right)\left(s-\lambda_1\right)\left(s-\lambda_2\right) }}{ s\left(s-\lambda_1\right)\left(s-\lambda_2\right)\left(s^2+\omega_f^2\right)} \right\} \\&=&\frac{C_1 \left(s-\lambda_2\right)+C_2 \left(s-\lambda_1\right)}{\left(s-\lambda_1\right)\left(s-\lambda_2\right)} \\&&+\frac{F}{m}\left\{ \frac{\small{ C_3\left(s^3+\omega_f^2s-\lambda_2 s^2 -\lambda_2\omega_f^2\right) +C_4\left(s^3+\omega_f^2s-\lambda_1 s^2 -\lambda_1\omega_f^2\right) +C_5\left\{s^3-\left(\lambda_1+\lambda_2\right)s^2+\lambda_1\lambda_2 s\right\} +C_6\left\{s^2-\left(\lambda_1+\lambda_2\right)s+\lambda_1\lambda_2\right\} }}{ \left(s-\lambda_1\right)\left(s-\lambda_2\right)\left(s^2+\omega_f^2\right)} \right\} \\&=&\frac{(C_1 +C_2 )s-(C_1 \lambda_2+C_2 \lambda_1)}{\left(s-\lambda_1\right)\left(s-\lambda_2\right)} \\&&+\frac{F}{m}\left[ \frac{\small{ \left(C_3+C_4+C_5\right)s^3 +\left\{-C_3\lambda_2-C_4\lambda_1-C_5(\lambda_1+\lambda_2)+C_6\right\}s^2 +\left\{C_3\omega_f^2+C_4\omega_f^2+C_5\lambda_1\lambda_2-C_6(\lambda_1+\lambda_2)\right\}s +\left(-C_3\lambda_2\omega_f^2 -C_4\lambda_1\omega_f^2 +C_6\lambda_1\lambda_2\right) }} { \left(s-\lambda_1\right)\left(s-\lambda_2\right)\left(s^2+\omega_f^2\right)} \right] \end{eqnarray}$$

部分分数分解 第1項分子の係数比較

$$\begin{eqnarray} sx_0 +v_0 +2\gamma x_0&=&\left(C_1 +C_2 \right)s-\left(C_1 \lambda_2+C_2 \lambda_1\right) \end{eqnarray}$$ $$\left\{\begin{eqnarray} x_0&=&C_1 +C_2 \\v_0 +2\gamma x_0&=&-\left(C_1 \lambda_2+C_2 \lambda_1\right) \end{eqnarray}\right.$$

部分分数分解 \(C_2\)

$$\begin{eqnarray} x_0&=&C_1+C_2 \\C_1&=&x_0-C_2 \\v_0+2\gamma x_0&=&-\left\{\left(x_0-C_2\right)\lambda_2+C_2\lambda_1\right\} \\&=&-\lambda_2x_0+C_2\lambda_2-C_2\lambda_1 \\v_0+2\gamma x_0+\lambda_2 x_0&=&C_2\left(\lambda_2-\lambda_1\right) \\C_2 &=&\frac{v_0+2\gamma x_0+\lambda_2 x_0}{\lambda_2-\lambda_1} \\&&\;\ldots\;\lambda_{1,2}=\frac{-2\gamma\pm\sqrt{\left(2\gamma\right)^2-4\cdot1\cdot\omega_0^2}}{2\cdot1}=-\gamma\pm\sqrt{\gamma^2-\omega_0}=-\gamma\pm\xi \\&&\;\ldots\;\lambda_2-\lambda_1=-\gamma-\xi -\left(-\gamma+\xi \right)=-2\xi \\&=&\frac{v_0+2\gamma x_0+\left(-\gamma-\xi \right) x_0}{-2\xi } \\&=&\frac{v_0+\gamma x_0-\xi x_0}{-2\xi } \\&=&\frac{v_0+\gamma x_0}{-2\xi }-\frac{\xi x_0}{-2\xi } \\&=&\frac{x_0}{2}-\frac{v_0+\gamma x_0}{2\xi } \end{eqnarray}$$

部分分数分解 \(C_1\)

$$\begin{eqnarray} C_1&=&x_0-C_2 \\&=&x_0-\left(\frac{x_0}{2}-\frac{v_0+\gamma x_0}{2\xi }\right) \\&=&\frac{x_0}{2}+\frac{v_0+\gamma x_0}{2\xi } \end{eqnarray}$$

部分分数分解 第2項分子の係数比較

$$\begin{eqnarray} s&=&\left(C_3+C_4+C_5\right)s^3 +\left\{-C_3\lambda_2-C_4\lambda_1-C_5(\lambda_1+\lambda_2)+C_6\right\}s^2 +\left\{C_3\omega_f^2+C_4\omega_f^2+C_5\lambda_1\lambda_2-C_6(\lambda_1+\lambda_2)\right\}s +\left(-C_3\lambda_2\omega_f^2 -C_4\lambda_1\omega_f^2 +C_6\lambda_1\lambda_2\right) \end{eqnarray}$$ $$\left\{\begin{eqnarray} 0&=&&C_3&+&C_4&+&C_5& \\0&=&-\lambda_2&C_3&-\lambda_1&C_4&-(\lambda_1+\lambda_2)&C_5&+&C_6 \\1&=&\omega_f^2&C_3&+\omega_f^2&C_4&+\lambda_1\lambda_2&C_5&-(\lambda_1+\lambda_2)&C_6 \\0&=&-\lambda_2\omega_f^2&C_3&-\lambda_1\omega_f^2&C_4&&&+\lambda_1\lambda_2&C_6 \end{eqnarray}\right.$$ 行列とベクトルで表現すると以下のようになる. $$\begin{eqnarray} \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} &=& \begin{bmatrix} 1&1&1&0 \\-\lambda_2&-\lambda_1&-(\lambda_1+\lambda_2)&1 \\\omega_f^2&\omega_f^2&\lambda_1\lambda_2&-(\lambda_1+\lambda_2) \\-\lambda_2\omega_f^2&-\lambda_1\omega_f^2&0&\lambda_1\lambda_2 \end{bmatrix} \begin{bmatrix} C_3\\C_4\\C_5\\C_6 \end{bmatrix} \end{eqnarray}$$ 行列とベクトルを以下の文字で表すとする. $$\begin{eqnarray} \boldsymbol{y}=\begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} ,\;\boldsymbol{A}=\begin{bmatrix} 1&1&1&0 \\-\lambda_2&-\lambda_1&-(\lambda_1+\lambda_2)&1 \\\omega_f^2&\omega_f^2&\lambda_1\lambda_2&-(\lambda_1+\lambda_2) \\-\lambda_2\omega_f^2&-\lambda_1\omega_f^2&0&\lambda_1\lambda_2 \end{bmatrix} ,\;\boldsymbol{x}=\begin{bmatrix}C_3\\C_4\\C_5\\C_6\end{bmatrix} \end{eqnarray}$$ これを\(\boldsymbol{x}\)について解く. $$\begin{eqnarray} \\\boldsymbol{y}&=&\boldsymbol{A}\boldsymbol{x} \\\boldsymbol{A}^{-1}\boldsymbol{y}&=&\boldsymbol{A}^{-1}\boldsymbol{A}\boldsymbol{x} \\\boldsymbol{x}&=&\boldsymbol{A}^{-1}\boldsymbol{y} \\\boldsymbol{x}&=&\frac{\tilde{\boldsymbol{A}}}{\left|\boldsymbol{A}\right|}\boldsymbol{y} \\&&\;\ldots\;\href{https://shikitenkai.blogspot.com/2021/05/blog-post_96.html}{\boldsymbol{A}^{-1}=\frac{\tilde{\boldsymbol{A}}}{\left|\boldsymbol{A}\right|}},\;\href{https://shikitenkai.blogspot.com/2021/05/blog-post_3.html}{\tilde{\boldsymbol{A}}は余因子行列} \\\begin{bmatrix} C_3\\C_4\\C_5\\C_6 \end{bmatrix}&=& \frac{1}{\left|\boldsymbol{A}\right|} \begin{bmatrix} (-1)^{1+1}\left|\boldsymbol{M}_{11}\right| & (-1)^{1+2}\left|\boldsymbol{M}_{21}\right| & (-1)^{1+3}\left|\boldsymbol{M}_{31}\right| & (-1)^{1+4}\left|\boldsymbol{M}_{41}\right| \\(-1)^{2+1}\left|\boldsymbol{M}_{12}\right| & (-1)^{2+2}\left|\boldsymbol{M}_{22}\right| & (-1)^{2+3}\left|\boldsymbol{M}_{32}\right| & (-1)^{2+4}\left|\boldsymbol{M}_{42}\right| \\(-1)^{3+1}\left|\boldsymbol{M}_{13}\right| & (-1)^{3+2}\left|\boldsymbol{M}_{23}\right| & (-1)^{3+3}\left|\boldsymbol{M}_{33}\right| & (-1)^{3+4}\left|\boldsymbol{M}_{43}\right| \\(-1)^{4+1}\left|\boldsymbol{M}_{14}\right| & (-1)^{4+2}\left|\boldsymbol{M}_{24}\right| & (-1)^{4+3}\left|\boldsymbol{M}_{34}\right| & (-1)^{4+4}\left|\boldsymbol{M}_{44}\right| \end{bmatrix} \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} = \frac{1}{\left|\boldsymbol{A}\right|} \begin{bmatrix} \;\;\;\left|\boldsymbol{M}_{31}\right| \\-\left|\boldsymbol{M}_{32}\right| \\\;\;\;\left|\boldsymbol{M}_{33}\right| \\-\left|\boldsymbol{M}_{34}\right| \end{bmatrix} \\&&\;\ldots\;\href{https://shikitenkai.blogspot.com/2021/05/blog-post_3.html}{\boldsymbol{M}_{ij}:元の行列\boldsymbol{A}からi行とj列を除いた行列(添え字の順序に注意)} \end{eqnarray}$$

\(\left|\boldsymbol{M}_{3*}\right|\)及び\(\left|\boldsymbol{A}\right|\)の計算

$$\begin{eqnarray} \left|\boldsymbol{M}_{31}\right| &=&\begin{vmatrix} 1&1&0 \\-\lambda_1&-\left(\lambda_1+\lambda_2\right)&1 \\-\lambda_1\omega_f^2&0&\lambda_1\lambda_2 \end{vmatrix} =\begin{vmatrix} -\left(\lambda_1+\lambda_2\right)&1 \\0&\lambda_1\lambda_2 \end{vmatrix} -\begin{vmatrix} -\lambda_1&1 \\-\lambda_1\omega_f^2&\lambda_1\lambda_2 \end{vmatrix} \\&=&-\left(\lambda_1+\lambda_2\right)\cdot\lambda_1\lambda_2-1\cdot0-\left\{\left(-\lambda_1\right)\cdot\lambda_1\lambda_2-1\cdot\left(-\lambda_1\omega_f^2\right)\right\} \\&=&\color{red}{-\lambda_1^2\lambda_2}\color{black}{}-\lambda_1\lambda_2^2\color{red}{+\lambda_1^2\lambda_2}\color{black}{}-\lambda_1\omega_f^2 \\&=&-\lambda_1\lambda_2^2-\lambda_1\omega_f^2 \\&=&-\lambda_1\left(\lambda_2^2+\omega_f^2\right) \\ \left|\boldsymbol{M}_{32}\right| &=&\begin{vmatrix} 1&1&0 \\-\lambda_2&-\left(\lambda_1+\lambda_2\right)&1 \\-\lambda_2\omega_f^2&0&\lambda_1\lambda_2 \end{vmatrix} =\begin{vmatrix} -\left(\lambda_1+\lambda_2\right)&1 \\0&\lambda_1\lambda_2 \end{vmatrix} -\begin{vmatrix} -\lambda_2&1 \\-\lambda_2\omega_f^2&\lambda_1\lambda_2 \end{vmatrix} \\&=&-\left(\lambda_1+\lambda_2\right)\cdot\lambda_1\lambda_2-1\cdot0-\left\{\left(-\lambda_2\right)\cdot\lambda_1\lambda_2-1\cdot\left(-\lambda_2\omega_f^2\right)\right\} \\&=&-\lambda_1^2\lambda_2\color{red}{-\lambda_1\lambda_1^2}\color{red}{+\lambda_1\lambda_2^2}\color{black}{}-\lambda_2\omega_f^2 \\&=&-\lambda_1^2\lambda_2-\lambda_2\omega_f^2 \\&=&-\lambda_2\left(\lambda_1^2+\omega_f^2\right) \\ \left|\boldsymbol{M}_{33}\right| &=&\begin{vmatrix} 1&1&0 \\-\lambda_2&-\lambda_1&1 \\-\lambda_2\omega_f^2&-\lambda_1\omega_f^2&\lambda_1\lambda_2 \end{vmatrix} =\begin{vmatrix} -\lambda_1&1 \\-\lambda_1\omega_f^2&\lambda_1\lambda_2 \end{vmatrix} -\begin{vmatrix} -\lambda_2&1 \\-\lambda_2\omega_f^2&\lambda_1\lambda_2 \end{vmatrix} \\&=&-\lambda_1\cdot\lambda_1\lambda_2-1\cdot\left(-\lambda_1\omega_f^2\right)-\left\{-\lambda_2\cdot\lambda_1\lambda_2-1\cdot\left(-\lambda_2\omega_f^2\right)\right\} \\&=&-\lambda_1^2\lambda_2+\lambda_1\omega_f^2+\lambda_1\lambda_2^2-\lambda_2\omega_f^2 \\&=&-\lambda_1\lambda_2\left(\lambda_1-\lambda_2\right)+\omega_f^2\left(\lambda_1-\lambda_2\right) \\&=&\left(-\lambda_1\lambda_2+\omega_f^2\right)\left(\lambda_1-\lambda_2\right) \\&=&-\left(\lambda_1-\lambda_2\right)\left(\lambda_1\lambda_2-\omega_f^2\right) \\ \left|\boldsymbol{M}_{34}\right| &=&\begin{vmatrix} 1&1&1 \\-\lambda_2&-\lambda_1&-(\lambda_1+\lambda_2) \\-\lambda_2\omega_f^2&-\lambda_1\omega_f^2&0 \end{vmatrix} =\begin{vmatrix} -\lambda_1&-(\lambda_1+\lambda_2) \\-\lambda_1\omega_f^2&0 \end{vmatrix} -\begin{vmatrix} -\lambda_2&-(\lambda_1+\lambda_2) \\-\lambda_2\omega_f^2&0 \end{vmatrix} +\begin{vmatrix} -\lambda_2&-\lambda_1 \\-\lambda_2\omega_f^2&-\lambda_1\omega_f^2 \end{vmatrix} \\&=& -\lambda_1\cdot0-\left\{-\left(\lambda_1+\lambda_2\right)\right\}\cdot\left(-\lambda_1\omega_f^2\right) -\left[-\lambda_2\cdot0-\left\{-\left(\lambda_1+\lambda_2\right)\right\}\cdot\left(-\lambda_2\omega_f^2\right)\right] +\left(-\lambda_2\right)\left(-\lambda_1\omega_f^2\right)-\left(-\lambda_1\right)\left(-\lambda_2\omega_f^2\right) \\&=& -\lambda_1^2\omega_f^2\color{red}{-\lambda_1\lambda_2\omega_f^2} \color{red}{+\lambda_1\lambda_2\omega_f^2}\color{black}{}+\lambda_2^2\omega_f^2 \color{red}{+\lambda_1\lambda_2\omega_f^2}\color{red}{-\lambda_1\lambda_2\omega_f^2} \\&=&\left(-\lambda_1^2+\lambda_2^2\right)\omega_f^2 \\&=&-\omega_f^2\left(\lambda_1^2-\lambda_2^2\right) \\&=&-\omega_f^2\left(\lambda_1+\lambda_2\right)\left(\lambda_1-\lambda_2\right) \\ \\ \left|\boldsymbol{A}\right| &=& \color{red}{a_{31}(-1)^{3+1}\left|\boldsymbol{M}_{31}\right|} \color{blue}{+a_{32}(-1)^{3+2}\left|\boldsymbol{M}_{32}\right|} \color{green}{+a_{33}(-1)^{3+3}\left|\boldsymbol{M}_{33}\right|} \color{magenta}{+a_{34}(-1)^{3+4}\left|\boldsymbol{M}_{34}\right|} \\&=& \color{red}{\omega_f^2\cdot1\cdot\left\{-\lambda_1\left(\lambda_2^2+\omega_f^2\right)\right\}} \color{blue}{+\omega_f^2\cdot-1\cdot\left\{-\lambda_2\left(\lambda_1^2+\omega_f^2\right)\right\}} \color{green}{+\lambda_1\lambda_2\cdot1\cdot\left\{-\left(\lambda_1-\lambda_2\right)\left(\lambda_1\lambda_2-\omega_f^2\right)\right\}} \color{magenta}{-\left(\lambda_1+\lambda_2\right)\cdot-1\cdot\left\{-\omega_f^2\left(\lambda_1+\lambda_2\right)\left(\lambda_1-\lambda_2\right)\right\}} \\&=& \color{red}{-\omega_f^2\lambda_1\left(\lambda_2^2+\omega_f^2\right)} \color{blue}{+\omega_f^2\lambda_2\left(\lambda_1^2+\omega_f^2\right)} \color{green}{ -\lambda_1\lambda_2\left(\lambda_1-\lambda_2\right)\left(\lambda_1\lambda_2-\omega_f^2\right) } \color{magenta}{ -\omega_f^2\left(\lambda_1+\lambda_2\right)^2\left(\lambda_1-\lambda_2\right) } \\&=& \color{red}{-\omega_f^2\lambda_1\left(\lambda_2^2+\omega_f^2\right)} \color{blue}{+\omega_f^2\lambda_2\left(\lambda_1^2+\omega_f^2\right)} \color{green}{-\lambda_1^3\lambda_2^2 \cancel{+\omega_f^2\lambda_1^2\lambda_2} +\lambda_1^2\lambda_2^3 \cancel{-\omega_f^2\lambda_1\lambda_2^2} } \color{magenta}{ -\omega_f^2\lambda_1^3 \cancel{-\omega_f^2\lambda_1^2\lambda_2} \cancel{+\omega_f^2\lambda_1\lambda_2^2} +\omega_f^2\lambda_2^3 } \\&&\;\ldots\;\left(A+B\right)^2\left(A-B\right)=A^3+A^2B-AB^2-B^3 \\&=& -\omega_f^2\lambda_1\left(\lambda_2^2+\omega_f^2\right) +\omega_f^2\lambda_2\left(\lambda_1^2+\omega_f^2\right) -\lambda_1^3\left(\lambda_2^2+\omega_f^2\right) +\lambda_2^3\left(\lambda_1^2+\omega_f^2\right) \\&=& \left(-\omega_f^2\lambda_1-\lambda_1^3\right) \left(\lambda_2^2+\omega_f^2\right) +\left(\omega_f^2\lambda_2+\lambda_2^3\right) \left(\lambda_1^2+\omega_f^2\right) \\&=& -\lambda_1\left(\lambda_1^2+\omega_f^2\right) \left(\lambda_2^2+\omega_f^2\right) +\lambda_2\left(\lambda_2^2+\omega_f^2\right) \left(\lambda_1^2+\omega_f^2\right) \\&=& -\left(\lambda_1-\lambda_2\right)\left(\lambda_1^2+\omega_f^2\right)\left(\lambda_2^2+\omega_f^2\right) \end{eqnarray}$$

部分分数分解 \(C_3,\;C_4,\;C_5,\;C_6\)

$$\begin{eqnarray} \begin{bmatrix} C_3\\C_4\\C_5\\C_6 \end{bmatrix}&=& \frac{1}{\left|\boldsymbol{A}\right|} \begin{bmatrix} \;\;\;\left|\boldsymbol{M}_{31}\right| \\-\left|\boldsymbol{M}_{32}\right| \\\;\;\;\left|\boldsymbol{M}_{33}\right| \\-\left|\boldsymbol{M}_{34}\right| \end{bmatrix} = \begin{bmatrix} \frac{-\lambda_1\cancel{\left(\lambda_2^2+\omega_f^2\right)}} {-\left(\lambda_1-\lambda_2\right)\left(\lambda_1^2+\omega_f^2\right)\cancel{\left(\lambda_2^2+\omega_f^2\right)}} \\\frac{-1\cdot-\lambda_2\cancel{\left(\lambda_1^2+\omega_f^2\right)}} {-\left(\lambda_1-\lambda_2\right)\cancel{\left(\lambda_1^2+\omega_f^2\right)}\left(\lambda_2^2+\omega_f^2\right)} \\\frac{-\cancel{\left(\lambda_1-\lambda_2\right)}\left(\lambda_1\lambda_2-\omega_f^2\right)} {-\cancel{\left(\lambda_1-\lambda_2\right)}\left(\lambda_1^2+\omega_f^2\right)\left(\lambda_2^2+\omega_f^2\right)} \\\frac{-1\cdot-\omega_f^2\left(\lambda_1+\lambda_2\right)\cancel{\left(\lambda_1-\lambda_2\right)}} {-\cancel{\left(\lambda_1-\lambda_2\right)}\left(\lambda_1^2+\omega_f^2\right)\left(\lambda_2^2+\omega_f^2\right)} \end{bmatrix} = \begin{bmatrix} \frac{\lambda_1}{(\lambda_1 - \lambda_2)(\lambda_1^2 + \omega_f^2)} \\\frac{-\lambda_2}{(\lambda_1 - \lambda_2)(\lambda_2^2 + \omega_f^2)} \\\frac{(\lambda_1\lambda_2 - \omega_f^2)}{(\lambda_1^2 + \omega_f^2)(\lambda_2^2 + \omega_f^2)} \\\frac{-\omega_f^2(\lambda_1 + \lambda_2)}{(\lambda_1^2 + \omega_f^2)(\lambda_2^2 + \omega_f^2)} \end{bmatrix} \end{eqnarray}$$

部分分数分解 まとめる

$$\begin{eqnarray} X&=& \frac{C_1}{s-\lambda_1} +\frac{C_2}{s-\lambda_2} +\frac{F}{m}\left( \frac{C_3}{s-\lambda_1} +\frac{C_4}{s-\lambda_2} +\frac{C_5s+C_6}{s^2+\omega_f^2} \right) \\&=& \left( \frac{C_1}{s-\lambda_1} +\frac{C_2}{s-\lambda_2} \right) +\frac{F}{m}\left( \frac{C_3}{s-\lambda_1} +\frac{C_4}{s-\lambda_2} \right) +\frac{F}{m}\left( \frac{C_5s+C_6}{s^2+\omega_f^2} \right) \\&=& \left( \frac{\frac{x_0}{2}+\frac{v_0+\gamma x_0}{2\xi}}{s-\lambda_1} +\frac{\frac{x_0}{2}-\frac{v_0+\gamma x_0}{2\xi}}{s-\lambda_2} \right) \\&&+\frac{F}{m}\left\{ \frac{\frac{\lambda_1}{(\lambda_1 - \lambda_2)(\lambda_1^2 + \omega_f^2)}}{s-\lambda_1} +\frac{\frac{-\lambda_2}{(\lambda_1 - \lambda_2)(\lambda_2^2 + \omega_f^2)}}{s-\lambda_2} \right\} \\&&+\frac{F}{m} \frac{ \frac{(\lambda_1\lambda_2 - \omega_f^2)}{(\lambda_1^2 + \omega_f^2)(\lambda_2^2 + \omega_f^2)}s +\frac{-\omega_f^2(\lambda_1 + \lambda_2)}{(\lambda_1^2 + \omega_f^2)(\lambda_2^2 + \omega_f^2)} }{s^2+\omega_f^2} \\&=& \left( \frac{\frac{x_0}{2}+\frac{v_0+\gamma x_0}{2\xi}}{s-\lambda_1} +\frac{\frac{x_0}{2}-\frac{v_0+\gamma x_0}{2\xi}}{s-\lambda_2} \right) \\&&+\frac{F}{m}\frac{1}{(\lambda_1 - \lambda_2)(\lambda_1^2 + \omega_f^2)(\lambda_2^2 + \omega_f^2)}\left\{ \frac{\lambda_1(\lambda_2^2 + \omega_f^2)}{s-\lambda_1} +\frac{-\lambda_2(\lambda_1^2 + \omega_f^2)}{s-\lambda_2} \right\} \\&&+\frac{F}{m}\frac{1}{(\lambda_1 - \lambda_2)(\lambda_1^2 + \omega_f^2)(\lambda_2^2 + \omega_f^2)} \frac{\left(\lambda_1\lambda_2 - \omega_f^2\right)\left(\lambda_1 - \lambda_2\right)s -\omega_f^2\left(\lambda_1 + \lambda_2\right)\left(\lambda_1 - \lambda_2\right)}{s^2+\omega_f^2} \end{eqnarray}$$

逆ラプラス変換 第1項

\(\gamma \lt \omega_0(\xiが虚数の場合)\) $$\begin{eqnarray} \\&&C_1 \mathfrak{L}^{-1}\left[\frac{1}{s-\lambda_1}\right] +C_2 \mathfrak{L}^{-1}\left[\frac{1}{s-\lambda_2}\right] \\&=&C_1 e^{\lambda_1 t}+C_2 e^{\lambda_2 t} \;\ldots\;\mathfrak{L}^{-1}\left[ \frac{1}{s+a} \right]=e^{-at} \\&=&\left(\frac{x_0}{2}+\frac{v_0+\gamma x_0}{2\xi }\right) e^{\lambda_1 t} +\left(\frac{x_0}{2}-\frac{v_0+\gamma x_0}{2\xi }\right) e^{\lambda_2 t} \\&=&\left(\frac{x_0}{2}+\frac{v_0+\gamma x_0}{2\xi }\right) e^{\left(-\gamma+\xi\right) t} +\left(\frac{x_0}{2}-\frac{v_0+\gamma x_0}{2\xi }\right) e^{\left(-\gamma-\xi\right) t} \\&&\;\ldots\;\lambda_{1,2} =-\frac{c}{2m}\pm\sqrt{\left(\frac{c}{2m}\right)^2-\left(\sqrt{\frac{k}{m}}\right)^2} =-\gamma\pm\sqrt{\gamma^2-\omega_0^2} =-\gamma\pm\xi \\&=&\left(\frac{x_0}{2}+\frac{v_0+\gamma x_0}{2\xi }\right) e^{-\gamma t}e^{\xi t} +\left(\frac{x_0}{2}-\frac{v_0+\gamma x_0}{2\xi }\right) e^{-\gamma t}e^{-\xi t} \;\ldots\;a^{A+B}=a^Aa^B \\&=& e^{-\gamma t}\left\{ \left(\frac{x_0}{2}+\frac{v_0+\gamma x_0}{2\omega i }\right)e^{\omega i t} +\left(\frac{x_0}{2}-\frac{v_0+\gamma x_0}{2\omega i }\right)e^{-\omega i t} \right\} \\&&\;\ldots\;\gamma \lt \omega_0(\xiが虚数の場合),\;\xi=\sqrt{\gamma^2-\omega_0^2}=\sqrt{\left|\gamma^2-\omega_0^2\right|}\;i=\omega i \\&=& e^{-\gamma t}\left[ \left(\frac{x_0}{2}+\frac{v_0+\gamma x_0}{2\omega i }\right)\left\{\cos{\left(\omega t\right)}+i\sin{\left(\omega t\right)}\right\} +\left(\frac{x_0}{2}-\frac{v_0+\gamma x_0}{2\omega i }\right)\left\{\cos{\left(-\omega t\right)}+i\sin{\left(-\omega t\right)}\right\} \right] \\&=& e^{-\gamma t}\left[ \left(\frac{x_0}{2}+\frac{v_0+\gamma x_0}{2\omega i }\right)\left\{\cos{\left(\omega t\right)}+i\sin{\left(\omega t\right)}\right\} +\left(\frac{x_0}{2}-\frac{v_0+\gamma x_0}{2\omega i }\right)\left\{\cos{\left(\omega t\right)}-i\sin{\left(\omega t\right)}\right\} \right] \\&&\;\ldots\;\cos{\left(-\omega t\right)}=\cos{\left(\omega t\right)},\;\sin{\left(-\omega t\right)}=-\sin{\left(\omega t\right)} \\&=& e^{-\gamma t}\left[ \left(\frac{x_0}{2}+\frac{v_0+\gamma x_0}{2\omega i }\right)\cos{\left(\omega t\right)} +\left(\frac{x_0}{2}+\frac{v_0+\gamma x_0}{2\omega i }\right)i\sin{\left(\omega t\right)} +\left(\frac{x_0}{2}-\frac{v_0+\gamma x_0}{2\omega i }\right)\cos{\left(\omega t\right)} -\left(\frac{x_0}{2}-\frac{v_0+\gamma x_0}{2\omega i }\right)i\sin{\left(\omega t\right)} \right] \\&=& e^{-\gamma t}\left[ \left\{ \left(\frac{x_0}{2}+\frac{v_0+\gamma x_0}{2\omega i }\right) +\left(\frac{x_0}{2}-\frac{v_0+\gamma x_0}{2\omega i }\right) \right\}\cos{\left(\omega t\right)} +\left\{ \left(\frac{x_0}{2}+\frac{v_0+\gamma x_0}{2\omega i }\right) -\left(\frac{x_0}{2}-\frac{v_0+\gamma x_0}{2\omega i }\right) \right\}i\sin{\left(\omega t\right)} \right] \\&=& e^{-\gamma t}\left\{ x_0\cos{\left(\omega t\right)} +\frac{v_0+\gamma x_0}{\omega i }i\sin{\left(\omega t\right)} \right\} \\&=& e^{-\gamma t}\left\{ x_0\cos{\left(\omega t\right)} +\frac{v_0+\gamma x_0}{\omega }\sin{\left(\omega t\right)} \right\} \;\ldots\;\frac{i}{i}=1 \\&=& e^{-\gamma t}\left\{ x_0\cos{\left(\omega t\right)} +\frac{v_0}{\omega }\sin{\left(\omega t\right)} +\frac{\gamma x_0}{\omega }\sin{\left(\omega t\right)} \right\} \\&=& x_0e^{-\gamma t}\left\{ \cos{\left(\omega t\right)} +\frac{\gamma }{\omega }\sin{\left(\omega t\right)} \right\} +v_0e^{-\gamma t}\left\{ \frac{1}{\omega }\sin{\left(\omega t\right)} \right\} \;\ldots\;初期位置x_0による項と初期速度v_0による項 \end{eqnarray}$$

逆ラプラス変換 第2項

\(\gamma \lt \omega_0(\xiが虚数の場合)\) $$\begin{eqnarray} &&\mathfrak{L}^{-1}\left[ \frac{F}{m}\frac{1}{(\lambda_1 - \lambda_2)(\lambda_1^2 + \omega_f^2)(\lambda_2^2 + \omega_f^2)}\left\{ \frac{\lambda_1(\lambda_2^2 + \omega_f^2)}{s-\lambda_1} +\frac{-\lambda_2(\lambda_1^2 + \omega_f^2)}{s-\lambda_2} \right\} \right] \\&=&\frac{F}{m}\frac{1}{(\lambda_1 - \lambda_2)(\lambda_1^2 + \omega_f^2)(\lambda_2^2 + \omega_f^2)}\left\{ \lambda_1(\lambda_2^2 + \omega_f^2)\mathfrak{L}^{-1}\left[ \frac{1}{s-\lambda_1} \right] -\lambda_2(\lambda_1^2 + \omega_f^2)\mathfrak{L}^{-1}\left[ \frac{1}{s-\lambda_2} \right] \right\} \\&=&\frac{F}{m}\frac{1}{2\xi\left\{\left(\omega_0^2-\omega_f^2\right)^2+\left(2\gamma\omega_f\right)^2\right\}}\left\{ \left(\lambda_1\lambda_2^2 + \lambda_1\omega_f^2\right)e^{\lambda_1 t} -\left(\lambda_1^2\lambda_2 + \lambda_2\omega_f^2\right)e^{\lambda_2 t} \right\} \\&&\;\ldots\;\lambda_1 + \lambda_2=-2\gamma,\;\lambda_1 - \lambda_2=2\xi ,\;\lambda_1\lambda_2=(-\gamma+\xi)(-\gamma-\xi)=(-\gamma)^2-\xi^2=\omega_0^2 \\&=&\frac{F}{m}\frac{1}{2\xi\left\{\left(\omega_0^2-\omega_f^2\right)^2+\left(2\gamma\omega_f\right)^2\right\}}\left\{ \left(\lambda_1\lambda_2^2 + \lambda_1\omega_f^2\right)e^{\left(-\gamma+\xi\right) t} -\left(\lambda_1^2\lambda_2 + \lambda_2\omega_f^2\right)e^{\left(-\gamma-\xi\right) t} \right\} \\&=&\frac{F}{m}\frac{1}{2\xi\left\{\left(\omega_0^2-\omega_f^2\right)^2+\left(2\gamma\omega_f\right)^2\right\}}\left\{ \left(\lambda_1\lambda_2^2 + \lambda_1\omega_f^2\right)e^{-\gamma t}e^{\xi t} -\left(\lambda_1^2\lambda_2 + \lambda_2\omega_f^2\right)e^{-\gamma t}e^{-\xi t} \right\} \\&&\;\ldots\;e^{A+B}=e^{A}e^{B} \\&=&\frac{F}{m}\frac{e^{-\gamma t}}{2\omega i\left\{\left(\omega_0^2-\omega_f^2\right)^2+\left(2\gamma\omega_f\right)^2\right\}}\left\{ \left(\lambda_1\lambda_2^2 + \lambda_1\omega_f^2\right)e^{\omega i t} -\left(\lambda_1^2\lambda_2 + \lambda_2\omega_f^2\right)e^{-\omega i t} \right\} \\&&\;\ldots\;\gamma \lt \omega_0(\xiが虚数の場合),\;\xi=\sqrt{\gamma^2-\omega_0^2}=\sqrt{\left|\gamma^2-\omega_0^2\right|}\;i=\omega i \\&=&\frac{F}{m}\frac{e^{-\gamma t}}{2\omega i\left\{\left(\omega_0^2-\omega_f^2\right)^2+\left(2\gamma\omega_f\right)^2\right\}} \left[ \left(\lambda_2\omega_0^2 + \lambda_1\omega_f^2\right)\left\{\cos{\left(\omega t\right)}+i\sin{\left(\omega t\right)}\right\} -\left(\lambda_1\omega_0^2 + \lambda_2\omega_f^2\right)\left\{\cos{\left(-\omega t\right)}+i\sin{\left(-\omega t\right)}\right\} \right] \\&&\;\ldots\;e^{ix}=\cos{\left(\omega t\right)}+i\sin{\left(\omega t\right)} \\&=&\frac{F}{m}\frac{e^{-\gamma t}}{2\omega i\left\{\left(\omega_0^2-\omega_f^2\right)^2+\left(2\gamma\omega_f\right)^2\right\}} \left\{ \left(\lambda_2\omega_0^2 + \lambda_1\omega_f^2\right)\cos{\left(\omega t\right)}+\left(\lambda_2\omega_0^2 + \lambda_1\omega_f^2\right)i\sin{\left(\omega_0 t\right)} -\left(\lambda_1\omega_0^2 + \lambda_2\omega_f^2\right)\cos{\left(-\omega t\right)}-\left(\lambda_1\omega_0^2 + \lambda_2\omega_f^2\right)i\sin{\left(-\omega t\right)} \right\} \\&=&\frac{F}{m}\frac{e^{-\gamma t}}{2\omega i\left\{\left(\omega_0^2-\omega_f^2\right)^2+\left(2\gamma\omega_f\right)^2\right\}} \left\{ \left(\lambda_2\omega_0^2 + \lambda_1\omega_f^2\right)\cos{\left(\omega t\right)}+\left(\lambda_2\omega_0^2 + \lambda_1\omega_f^2\right)i\sin{\left(\omega t\right)} -\left(\lambda_1\omega_0^2 + \lambda_2\omega_f^2\right)\cos{\left(\omega t\right)}+\left(\lambda_1\omega_0^2 + \lambda_2\omega_f^2\right)i\sin{\left(\omega t\right)} \right\} \\&&\;\ldots\;\cos{\left(-\omega t\right)}=\cos{\left(\omega t\right)},\;\sin{\left(-\omega t\right)}=-\sin{\left(\omega t\right)} \\&=&\frac{F}{m}\frac{e^{-\gamma t}}{2\omega i\left\{\left(\omega_0^2-\omega_f^2\right)^2+\left(2\gamma\omega_f\right)^2\right\}} \left[ \left\{\left(\lambda_2\omega_0^2 + \lambda_1\omega_f^2\right)-\left(\lambda_1\omega_0^2 + \lambda_2\omega_f^2\right)\right\}\cos{\left(\omega t\right)} +\left\{\left(\lambda_2\omega_0^2 + \lambda_1\omega_f^2\right)+\left(\lambda_1\omega_0^2 + \lambda_2\omega_f^2\right)\right\}i\sin{\left(\omega t\right)} \right] \\&=&\frac{F}{m}\frac{e^{-\gamma t}}{2\omega i\left\{\left(\omega_0^2-\omega_f^2\right)^2+\left(2\gamma\omega_f\right)^2\right\}} \left\{ -\left(\lambda_1-\lambda_2\right)\left(\omega_0^2-\omega_f^2\right)\cos{\left(\omega t\right)} +\left(\lambda_1+\lambda_2\right)\left(\omega_0^2+\omega_f^2\right)i\sin{\left(\omega t\right)} \right\} \\&=&\frac{F}{m}\frac{e^{-\gamma t}}{2\omega i\left\{\left(\omega_0^2-\omega_f^2\right)^2+\left(2\gamma\omega_f\right)^2\right\}} \left\{ -\left(2\xi\right)\left(\omega_0^2-\omega_f^2\right)\cos{\left(\omega t\right)} +\left(-2\gamma\right)\left(\omega_0^2+\omega_f^2\right)i\sin{\left(\omega t\right)} \right\} \\&&\;\ldots\;\lambda_1 + \lambda_2=-2\gamma,\;\lambda_1 - \lambda_2=2\xi \\&=&\frac{F}{m}\frac{e^{-\gamma t}}{\left(\omega_0^2-\omega_f^2\right)^2+\left(2\gamma\omega_f\right)^2} \left\{ -\frac{2\omega i}{2\omega i}\left(\omega_0^2-\omega_f^2\right)\cos{\left(\omega t\right)} +\frac{-2\gamma}{2\omega i}\left(\omega_0^2+\omega_f^2\right)i\sin{\left(\omega t\right)} \right\} \\&=&\frac{F}{m}\frac{e^{-\gamma t}}{\left(\omega_0^2-\omega_f^2\right)^2+\left(2\gamma\omega_f\right)^2} \left\{ -\left(\omega_0^2-\omega_f^2\right)\cos{\left(\omega t\right)} -\frac{\gamma}{\omega}\left(\omega_0^2+\omega_f^2\right)\sin{\left(\omega t\right)} \right\} \;\ldots\;\frac{i}{i}=1 \\&=&\frac{F}{m}\frac{-e^{-\gamma t}}{\left(\omega_0^2-\omega_f^2\right)^2+\left(2\gamma\omega_f\right)^2} \left\{ \left(\omega_0^2-\omega_f^2\right)\cos{\left(\omega t\right)} +\frac{\gamma}{\omega}\left(\omega_0^2+\omega_f^2\right)\sin{\left(\omega t\right)} \right\} \\&=&\frac{F}{m}\frac{-e^{-\gamma t}}{\left(\omega_0^2-\omega_f^2\right)^2+\left(2\gamma\omega_f\right)^2} \left\{ \left(\omega_0^2-\omega_f^2\right)\cos{\left(\omega t\right)} +\frac{\gamma}{\omega_0\sqrt{\zeta^2-1}}\left(\omega_0^2+\omega_f^2\right)\sin{\left(\omega t\right)} \right\} \\&&\;\ldots\; \omega =\sqrt{\gamma^2-\omega_0^2} =\sqrt{ \omega_0^2 \left( \frac{\gamma^2}{\omega_0^2}-\frac{\omega_0^2}{\omega_0^2} \right) } =\omega_0\sqrt{\zeta^2-1} ,\;\zeta=\frac{\gamma}{\omega_0} \\&=&\frac{F}{m}\frac{-e^{-\gamma t}}{\left(\omega_0^2-\omega_f^2\right)^2+\left(2\gamma\omega_f\right)^2} \left\{ \left(\omega_0^2-\omega_f^2\right)\cos{\left(\omega t\right)} +\frac{\zeta}{\sqrt{\zeta^2-1}}\left(\omega_0^2+\omega_f^2\right)\sin{\left(\omega t\right)} \right\} \end{eqnarray}$$

逆ラプラス変換 第3項

$$\begin{eqnarray} &&\mathfrak{L}^{-1}\left[\frac{F}{m} \frac{1}{(\lambda_1 - \lambda_2)(\lambda_1^2 + \omega_f^2)(\lambda_2^2 + \omega_f^2)}\left\{ \frac{(\lambda_1\lambda_2 - \omega_f^2)(\lambda_1 - \lambda_2)s-\omega_f^2(\lambda_1 + \lambda_2)(\lambda_1 - \lambda_2)}{s^2+\omega_f^2} \right\} \right] \\&=&\frac{F}{m} \frac{1}{(\lambda_1 - \lambda_2)(\lambda_1^2 + \omega_f^2)(\lambda_2^2 + \omega_f^2)} \mathfrak{L}^{-1}\left[ \frac{(\lambda_1\lambda_2 - \omega_f^2)(\lambda_1 - \lambda_2)s}{s^2+\omega_f^2} -\frac{\omega_f^2(\lambda_1 + \lambda_2)(\lambda_1 - \lambda_2)}{s^2+\omega_f^2} \right] \\&=&\frac{F}{m}\frac{1}{(\lambda_1 - \lambda_2)(\lambda_1^2 + \omega_f^2)(\lambda_2^2 + \omega_f^2)}\left\{ (\lambda_1\lambda_2 - \omega_f^2)(\lambda_1 - \lambda_2)\mathfrak{L}^{-1}\left[ \frac{s}{s^2+\omega_f^2} \right] -\omega_f(\lambda_1 + \lambda_2)(\lambda_1 - \lambda_2)\mathfrak{L}^{-1}\left[ \frac{\omega_f}{s^2+\omega_f^2} \right] \right\} \\&=&\frac{F}{m}\frac{1}{2\xi\left\{\left(\omega_0^2-\omega_f^2\right)^2+\left(2\gamma\omega_f\right)^2\right\}}\left\{ \left((\omega_0^2)-\omega_f^2\right)\left(2\xi\right)\cos{\left(\omega_f t\right)} -\omega_f(–2\gamma)(2\xi)\sin{\left(\omega_f t\right)} \right\} \\&&\;\ldots\;\lambda_1 + \lambda_2=-2\gamma,\;\lambda_1 - \lambda_2=2\xi ,\;\lambda_1\lambda_2=(-\gamma+\xi)(-\gamma-\xi)=(-\gamma)^2-\xi^2=\omega_0^2 \\&=&\frac{F}{m}\frac{1}{\left(\omega_0^2-\omega_f^2\right)^2+\left(2\gamma\omega_f\right)^2}\left\{ \left(\omega_0^2-\omega_f^2\right)\frac{2\xi}{2\xi}\cos{\left(\omega_f t\right)} +2\gamma\omega_f\frac{2\xi}{2\xi}\sin{\left(\omega_f t\right)} \right\} \\&=&\frac{F}{m}\frac{1}{\left(\omega_0^2-\omega_f^2\right)^2+\left(2\gamma\omega_f\right)^2}\left\{ \left(\omega_0^2-\omega_f^2\right)\cos{\left(\omega_f t\right)} +2\gamma\omega_f\sin{\left(\omega_f t\right)} \right\} \end{eqnarray}$$

逆ラプラス変換 第1,2,3項

$$\begin{eqnarray} x(t) &=& \color{red}{x_0e^{-\gamma t}\left\{ \cos{\left(\omega t\right)} +\frac{\gamma }{\omega }\sin{\left(\omega t\right)} \right\}}&\ldots初期位置による振動\;振幅にe^{-\gamma t}があるのでt\rightarrow\inftyで消える \\&+&\color{blue}{v_0e^{-\gamma t}\left\{ \frac{1}{\omega }\sin{\left(\omega t\right)} \right\}}&\ldots初期速度による振動\;振幅にe^{-\gamma t}があるのでt\rightarrow\inftyで消える \\&+&\color{green}{\frac{F}{m}\frac{-e^{-\gamma t}}{\left(\omega_0^2-\omega_f^2\right)^2+\left(2\gamma\omega_f\right)^2} \left\{ \left(\omega_0^2-\omega_f^2\right)\cos{\left(\omega t\right)} +\frac{\gamma}{\omega}\left(\omega_0^2+\omega_f^2\right)\sin{\left(\omega t\right)} \right\}}&\ldots過渡応答による振動\;振幅にe^{-\gamma t}があるのでt\rightarrow\inftyで消える \\&+&\color{magenta}{\frac{F}{m}\frac{1}{\left(\omega_0^2-\omega_f^2\right)^2+\left(2\gamma\omega_f\right)^2}\left\{ \left(\omega_0^2-\omega_f^2\right)\cos{\left(\omega_f t\right)} +2\gamma\omega_f\sin{\left(\omega_f t\right)} \right\}}&\ldots強制振動による振動\;振幅にe^{-\gamma t}がないのでt\rightarrow\inftyでも残る \end{eqnarray}$$

0 件のコメント:

コメントを投稿