間違いしかありません.コメントにてご指摘いただければ幸いです(気が付いた点を特に断りなく頻繁に書き直していますのでご注意ください).

余因子行列

余因子行列

\(i\)行\(j\)列の要素を\(a_{ij}\)とする\(n\)次正方行列\(\boldsymbol{A}\)において, \(i\)行と\(j\)列の要素を取り除いた残りの行列を\(\boldsymbol{M}_{ij}\)とした時, \(\tilde{a}_{ij}=(-1)^{i+j}\left|\boldsymbol{M}_{ji}\right|(添え字の順序に注意)\)を要素とする行列\(\tilde{\boldsymbol{A}}\)を余因子行列と呼ぶ.

2x2行列

$$\begin{eqnarray} \boldsymbol{A}_{2\times2}&=& \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \\ \\\tilde{\boldsymbol{A}}_{2\times2}&=& \begin{bmatrix} (-1)^{1+1}\left|\boldsymbol{M}_{11}\right| & (-1)^{1+2}\left|\boldsymbol{M}_{21}\right| \\(-1)^{2+1}\left|\boldsymbol{M}_{12}\right| & (-1)^{2+2}\left|\boldsymbol{M}_{22}\right| \end{bmatrix} \\&=& \begin{bmatrix} \left|\boldsymbol{M}_{11}\right| & -\left|\boldsymbol{M}_{21}\right| \\-\left|\boldsymbol{M}_{12}\right| & \left|\boldsymbol{M}_{22}\right| \end{bmatrix} \\&=& \begin{bmatrix} \left|\boldsymbol{M}_{11}\right| & -\left|\boldsymbol{M}_{12}\right| \\-\left|\boldsymbol{M}_{21}\right| & \left|\boldsymbol{M}_{22}\right| \end{bmatrix}^{T}\;\ldots\;\boldsymbol{A}^{T}:\boldsymbol{A}の転置行列 \\&=& \begin{bmatrix} a_{22} & -a_{21} \\ -a_{12} & a_{11} \end{bmatrix}^{T} \\&=& \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix} \\ \\\boldsymbol{A}_{2\times2}&=& \begin{bmatrix} a& b \\c & d \end{bmatrix} \\\tilde{\boldsymbol{A}}_{2\times2}&=& \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \end{eqnarray}$$

3x3行列

$$\begin{eqnarray} \boldsymbol{A}_{3\times3}&=& \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \\ \\\tilde{\boldsymbol{A}}_{3\times3} &=& \begin{bmatrix} (-1)^{1+1}\left|\boldsymbol{M}_{11}\right| & (-1)^{1+2}\left|\boldsymbol{M}_{21}\right| & (-1)^{1+3}\left|\boldsymbol{M}_{31}\right| \\(-1)^{2+1}\left|\boldsymbol{M}_{12}\right| & (-1)^{2+2}\left|\boldsymbol{M}_{22}\right| & (-1)^{2+3}\left|\boldsymbol{M}_{32}\right| \\(-1)^{3+1}\left|\boldsymbol{M}_{13}\right| & (-1)^{3+2}\left|\boldsymbol{M}_{23}\right| & (-1)^{3+3}\left|\boldsymbol{M}_{33}\right| \end{bmatrix} \\&=& \begin{bmatrix} \left|\boldsymbol{M}_{11}\right| & -\left|\boldsymbol{M}_{21}\right| & \left|\boldsymbol{M}_{31}\right| \\-\left|\boldsymbol{M}_{12}\right| & \left|\boldsymbol{M}_{22}\right| & -\left|\boldsymbol{M}_{32}\right| \\\left|\boldsymbol{M}_{13}\right| & -\left|\boldsymbol{M}_{23}\right| & \left|\boldsymbol{M}_{33}\right| \end{bmatrix} \\&=& \begin{bmatrix} \left|\boldsymbol{M}_{11}\right| & -\left|\boldsymbol{M}_{12}\right| & \left|\boldsymbol{M}_{13}\right| \\-\left|\boldsymbol{M}_{21}\right| & \left|\boldsymbol{M}_{22}\right| & -\left|\boldsymbol{M}_{23}\right| \\\left|\boldsymbol{M}_{31}\right| & -\left|\boldsymbol{M}_{32}\right| & \left|\boldsymbol{M}_{33}\right| \end{bmatrix}^{T}\;\ldots\;\boldsymbol{A}^{T}:\boldsymbol{A}の転置行列 \\&=& \begin{bmatrix} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} & -\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} & \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} \\-\begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} & \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} & -\begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix} \\\begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix} & -\begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix} & \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \end{bmatrix}^{T} \\&=& \begin{bmatrix} a_{22}a_{33}-a_{23}a_{32} & -(a_{21}a_{33}-a_{23}a_{31}) & a_{21}a_{32}-a_{22}a_{31} \\-(a_{12}a_{33}-a_{13}a_{32}) & a_{11}a_{33}-a_{13}a_{31} & -(a_{11}a_{32}-a_{12}a_{31}) \\a_{12}a_{23}-a_{13}a_{22} & -(a_{11}a_{23}-a_{13}a_{21}) & a_{11}a_{22}-a_{12}a_{21} \end{bmatrix}^{T} \\&=& \begin{bmatrix} a_{22}a_{33}-a_{23}a_{32} & -(a_{12}a_{33}-a_{13}a_{32}) & a_{12}a_{23}-a_{13}a_{22} \\-(a_{21}a_{33}-a_{23}a_{31}) & a_{11}a_{33}-a_{13}a_{31} & -(a_{11}a_{23}-a_{13}a_{21}) \\a_{21}a_{32}-a_{22}a_{31} & -(a_{11}a_{32}-a_{12}a_{31}) & a_{11}a_{22}-a_{12}a_{21} \end{bmatrix} \\&=& \begin{bmatrix} a_{22}a_{33}-a_{23}a_{32} & a_{13}a_{32}-a_{12}a_{33} & a_{12}a_{23}-a_{13}a_{22} \\a_{23}a_{31}-a_{21}a_{33} & a_{11}a_{33}-a_{13}a_{31} & a_{13}a_{21}-a_{11}a_{23} \\a_{21}a_{32}-a_{22}a_{31} & a_{12}a_{31}-a_{11}a_{32} & a_{11}a_{22}-a_{12}a_{21} \end{bmatrix} \end{eqnarray}$$

余因子行列と元の行列との積

$$\begin{eqnarray} \tilde{\boldsymbol{A}}\boldsymbol{A}=\boldsymbol{A}\tilde{\boldsymbol{A}}=\left|\boldsymbol{A}\right|\boldsymbol{I} \end{eqnarray}$$

余因子行列と元の行列との積 3x3の例

$$\begin{eqnarray} \tilde{\boldsymbol{A}}_{3\times3}\boldsymbol{A}_{3\times3} &=& \begin{bmatrix} \left|\boldsymbol{M}_{11}\right| & -\left|\boldsymbol{M}_{21}\right| & \left|\boldsymbol{M}_{31}\right| \\-\left|\boldsymbol{M}_{12}\right| & \left|\boldsymbol{M}_{22}\right| & -\left|\boldsymbol{M}_{32}\right| \\\left|\boldsymbol{M}_{13}\right| & -\left|\boldsymbol{M}_{23}\right| & \left|\boldsymbol{M}_{33}\right| \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \\\\&=&\begin{bmatrix} \left|\boldsymbol{M}_{11}\right| a_{11} -\left|\boldsymbol{M}_{21}\right| a_{21} +\left|\boldsymbol{M}_{31}\right| a_{31} & \left|\boldsymbol{M}_{11}\right| a_{12} -\left|\boldsymbol{M}_{21}\right| a_{22} +\left|\boldsymbol{M}_{31}\right| a_{32} & \left|\boldsymbol{M}_{11}\right| a_{13} -\left|\boldsymbol{M}_{21}\right| a_{23} +\left|\boldsymbol{M}_{31}\right| a_{33} \\-\left|\boldsymbol{M}_{12}\right| a_{11} +\left|\boldsymbol{M}_{22}\right| a_{21} -\left|\boldsymbol{M}_{32}\right| a_{31} & -\left|\boldsymbol{M}_{12}\right| a_{12} +\left|\boldsymbol{M}_{22}\right| a_{22} -\left|\boldsymbol{M}_{32}\right| a_{32} & -\left|\boldsymbol{M}_{12}\right| a_{13} +\left|\boldsymbol{M}_{22}\right| a_{23} -\left|\boldsymbol{M}_{32}\right| a_{33} \\\left|\boldsymbol{M}_{13}\right| a_{11} -\left|\boldsymbol{M}_{23}\right| a_{21} +\left|\boldsymbol{M}_{33}\right| a_{31} & \left|\boldsymbol{M}_{13}\right| a_{12} -\left|\boldsymbol{M}_{23}\right| a_{22} +\left|\boldsymbol{M}_{33}\right| a_{32} & \left|\boldsymbol{M}_{13}\right| a_{13} -\left|\boldsymbol{M}_{23}\right| a_{23} +\left|\boldsymbol{M}_{33}\right| a_{33} \end{bmatrix} \\\\&=&\begin{bmatrix} \left|\boldsymbol{A}_{3\times3}\right| & \left|\boldsymbol{M}_{11}\right| a_{12} -\left|\boldsymbol{M}_{21}\right| a_{22} +\left|\boldsymbol{M}_{31}\right| a_{32} & \left|\boldsymbol{M}_{11}\right| a_{13} -\left|\boldsymbol{M}_{21}\right| a_{23} +\left|\boldsymbol{M}_{31}\right| a_{33} \\-\left|\boldsymbol{M}_{12}\right| a_{11} +\left|\boldsymbol{M}_{22}\right| a_{21} -\left|\boldsymbol{M}_{32}\right| a_{31} & \left|\boldsymbol{A}_{3\times3}\right| & -\left|\boldsymbol{M}_{12}\right| a_{13} +\left|\boldsymbol{M}_{22}\right| a_{23} -\left|\boldsymbol{M}_{32}\right| a_{33} \\\left|\boldsymbol{M}_{13}\right| a_{11} -\left|\boldsymbol{M}_{23}\right| a_{21} +\left|\boldsymbol{M}_{33}\right| a_{31} & \left|\boldsymbol{M}_{13}\right| a_{12} -\left|\boldsymbol{M}_{23}\right| a_{22} +\left|\boldsymbol{M}_{33}\right| a_{32} & \left|\boldsymbol{A}_{3\times3}\right| \end{bmatrix} \;\ldots\;計算は下記“対角要素について”に記載 \\\\&=&\begin{bmatrix} \left|\boldsymbol{A}_{3\times3}\right| & 0 & 0 \\0 & \left|\boldsymbol{A}_{3\times3}\right| & 0 \\0 & 0 & \left|\boldsymbol{A}_{3\times3}\right| \end{bmatrix} \;\ldots\;計算は下記“その他要素について”に記載 \\\\&=&\left|\boldsymbol{A}_{3\times3}\right|\begin{bmatrix} 1 & 0 & 0 \\0 & 1 & 0 \\0 & 0 & 1 \end{bmatrix} \\\\&=&\left|\boldsymbol{A}_{3\times3}\right| \boldsymbol{I}_{3} \;\ldots\;\boldsymbol{I}_{3}:3\times3の単位行列 \end{eqnarray}$$

対角要素について

$$\begin{eqnarray} \left|\boldsymbol{A}_{3\times3}\right|&=& \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \\&=&a_{11}\boldsymbol{M}_{11} -a_{21}\boldsymbol{M}_{21} +a_{31}\boldsymbol{M}_{31} \\&=&-a_{12}\boldsymbol{M}_{12} +a_{22}\boldsymbol{M}_{22} -a_{32}\boldsymbol{M}_{32} \\&=&a_{13}\boldsymbol{M}_{13} -a_{23}\boldsymbol{M}_{23} +a_{33}\boldsymbol{M}_{33} \end{eqnarray}$$

その他要素について

$$\begin{eqnarray} \left|\boldsymbol{M}_{11}\right| a_{12} -\left|\boldsymbol{M}_{21}\right| a_{22} +\left|\boldsymbol{M}_{31}\right| a_{32} &=& \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} a_{12} -\begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} a_{22} +\begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix} a_{32} \\&=&a_{12}(a_{22}a_{33}-a_{23}a_{32})-a_{22}(a_{12}a_{33}-a_{13}a_{32})+a_{32}(a_{12}a_{23}-a_{13}a_{22}) \\&=& \color{red }{ a_{12}a_{22}a_{33}} \color{blue }{-a_{12}a_{23}a_{32}} \color{red }{-a_{12}a_{22}a_{33}} \color{green}{+a_{13}a_{22}a_{32}} \color{blue }{+a_{12}a_{23}a_{32}} \color{green}{-a_{13}a_{22}a_{32}} \\&=&0 \\\left|\boldsymbol{M}_{11}\right| a_{13} -\left|\boldsymbol{M}_{21}\right| a_{23} +\left|\boldsymbol{M}_{31}\right| a_{33} &=& \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} a_{13} -\begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} a_{23} +\begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix} a_{33} \\&=&a_{13}(a_{22}a_{33}-a_{23}a_{32})-a_{23}(a_{12}a_{33}-a_{13}a_{32})+a_{33}(a_{12}a_{23}-a_{13}a_{22}) \\&=& \color{red }{ a_{13}a_{22}a_{33}} \color{blue }{-a_{13}a_{23}a_{32}} \color{green}{-a_{12}a_{23}a_{33}} \color{blue}{+a_{13}a_{23}a_{32}} \color{green}{+a_{12}a_{23}a_{33}} \color{red }{-a_{13}a_{22}a_{33}} \\&=&0 \\-\left|\boldsymbol{M}_{12}\right| a_{11} +\left|\boldsymbol{M}_{22}\right| a_{21} -\left|\boldsymbol{M}_{32}\right| a_{31} &=& -\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} a_{11} +\begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} a_{21} -\begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix} a_{31} \\&=&-a_{11}(a_{21}a_{33}-a_{23}a_{31})+a_{21}(a_{11}a_{33}-a_{13}a_{31})-a_{31}(a_{11}a_{23}-a_{13}a_{21}) \\&=& \color{red }{-a_{11}a_{21}a_{33}} \color{blue }{+a_{11}a_{23}a_{31}} \color{red }{+a_{11}a_{21}a_{33}} \color{green}{-a_{13}a_{21}a_{31}} \color{blue }{-a_{11}a_{23}a_{31}} \color{green}{+a_{13}a_{21}a_{31}} \\&=&0 \\-\left|\boldsymbol{M}_{12}\right| a_{13} +\left|\boldsymbol{M}_{22}\right| a_{23} -\left|\boldsymbol{M}_{32}\right| a_{33} &=& -\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} a_{13} +\begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} a_{23} -\begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix} a_{33} \\&=&-a_{13}(a_{21}a_{33}-a_{23}a_{31})+a_{23}(a_{11}a_{33}-a_{13}a_{31})-a_{33}(a_{11}a_{23}-a_{13}a_{21}) \\&=& \color{red }{-a_{13}a_{21}a_{33}} \color{blue }{+a_{13}a_{23}a_{31}} \color{green}{+a_{11}a_{23}a_{33}} \color{blue }{-a_{13}a_{23}a_{31}} \color{green}{-a_{11}a_{23}a_{33}} \color{red }{+a_{13}a_{21}a_{33}} \\&=&0 \\ \left|\boldsymbol{M}_{13}\right| a_{11} -\left|\boldsymbol{M}_{23}\right| a_{21} +\left|\boldsymbol{M}_{33}\right| a_{31} &=& \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} a_{11} -\begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix} a_{21} +\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} a_{31} \\&=&a_{11}(a_{21}a_{32}-a_{22}a_{31}) -a_{21}(a_{11}a_{32}-a_{12}a_{31}) +a_{31}(a_{11}a_{22}-a_{12}a_{21}) \\&=& \color{red }{ a_{11}a_{21}a_{32}} \color{blue }{-a_{11}a_{22}a_{31}} \color{red }{-a_{11}a_{21}a_{32}} \color{green}{+a_{12}a_{21}a_{31}} \color{blue }{+a_{11}a_{22}a_{31}} \color{green}{-a_{12}a_{21}a_{31}} \\&=&0 \\ \left|\boldsymbol{M}_{13}\right| a_{12} -\left|\boldsymbol{M}_{23}\right| a_{22} +\left|\boldsymbol{M}_{33}\right| a_{32} &=& \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} a_{12} -\begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix} a_{22} +\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} a_{32} \\&=& a_{12}(a_{21}a_{32}-a_{22}a_{31}) -a_{22}(a_{11}a_{32}-a_{12}a_{31}) +a_{32}(a_{11}a_{22}-a_{12}a_{21}) \\&=& \color{red }{ a_{12}a_{21}a_{32}} \color{blue }{-a_{12}a_{22}a_{31}} \color{green}{-a_{11}a_{22}a_{32}} \color{blue}{+a_{12}a_{22}a_{31}} \color{green}{+a_{11}a_{22}a_{32}} \color{red }{-a_{12}a_{21}a_{32}} \\&=&0 \end{eqnarray}$$

0 件のコメント:

コメントを投稿