間違いしかありません.コメントにてご指摘いただければ幸いです(気が付いた点を特に断りなく頻繁に書き直していますのでご注意ください).

バネマスダンパー系,運動方程式,ラプラス変換,逆ラプラス変換,単位ステップ凾数

バネマスダンパー系

運動方程式

$$\begin{eqnarray} m\ddot{x} &+&c\dot{x} &+&kx &=&Fu(t) \\ \frac{\mathrm{d^2}x}{\mathrm{d^2}t} &+&\frac{c}{m}\frac{\mathrm{d}x}{\mathrm{d}t} &+&\frac{k}{m}x &=&\frac{F}{m}u(t) \\ \frac{\mathrm{d^2}x}{\mathrm{d^2}t} &+&2\gamma\frac{\mathrm{d}x}{\mathrm{d}t} &+&\omega_0^2x &=&\frac{F}{m}u(t) \;\cdots\;\gamma=\frac{c}{2m},\;\omega_0^2=\frac{k}{m} \end{eqnarray}$$ ここで入力\(u\)を単位ステップ凾数とする. $$\begin{eqnarray} u(t) &=& \left\{ \begin{array}{l}1 \space(t \geq 0)\\ 0\space(t\lt0) \end{array} \right. \end{eqnarray}$$

ラプラス変換

$$\begin{eqnarray} \mathfrak{L}\left[ \frac{\mathrm{d^2}x}{\mathrm{d^2}t} \right.&+&\left.2\gamma\frac{\mathrm{d}x}{\mathrm{d}t} \right.&+&\left.\omega_0^2x \right]&=\mathfrak{L}\left[\frac{F}{m}u(t)\right] \\\mathfrak{L}\left[ \frac{\mathrm{d^2}x}{\mathrm{d^2}t} \right] &+&\mathfrak{L}\left[ 2\gamma\frac{\mathrm{d}x}{\mathrm{d}t} \right] &+&\mathfrak{L}\left[ \omega_0^2 x\right] &=\mathfrak{L}\left[\frac{F}{m}u(t)\right] \\\mathfrak{L}\left[ \frac{\mathrm{d^2}x}{\mathrm{d^2}t} \right] &+&2\gamma\mathfrak{L}\left[ \frac{\mathrm{d}x}{\mathrm{d}t} \right] &+&\omega_0^2\mathfrak{L}\left[ x\right] &=\frac{F}{m}\mathfrak{L}\left[u(t)\right] \\ s^2X-sx_0 -v_0 &+&2\gamma\left(sX-x_0 \right) &+&\omega_0^2X &=\frac{F}{m}U \\ \\&&&&&\;\ldots\;\mathfrak{L}\left[x\right]=X \\&&&&&\;\ldots\;\mathfrak{L}\left[ \frac{\mathrm{d}x}{\mathrm{d}t}\right] =s^2X-x_0,\;x_0=x(0) \\&&&&&\;\ldots\;\mathfrak{L}\left[ \frac{\mathrm{d^2}x}{\mathrm{d^2}t}\right] =s^2X-sx_0 -v_0,\;v_0=x'(0) \\&&&&&\;\ldots\;\mathfrak{L}\left[u(t)\right]=U \end{eqnarray}$$

\(X\)について解く

$$\begin{eqnarray} s^2X+2\gamma Xs+\omega_0^2X &=& sx_0 +v_0 +2\gamma x_0 +\frac{F}{m}U \\ \left(s^2+2\gamma s+\omega_0^2\right)X &=& sx_0 +v_0 +2\gamma x_0 +\frac{F}{m}U \\ X&=&\frac{sx_0 +v_0 +2\gamma x_0 }{s^2+2\gamma s+\omega_0^2}+\frac{F}{m}\frac{1}{s^2+2\gamma s+\omega_0^2}U \\&=&\frac{sx_0 +v_0 +2\gamma x_0 }{\left(s-\lambda_1\right)\left(s-\lambda_2\right)}+\frac{F}{m}\frac{1}{\left(s-\lambda_1\right)\left(s-\lambda_2\right)}U \end{eqnarray}$$

部分分数分解 準備

$$\begin{eqnarray} U&=&\href{https://shikitenkai.blogspot.com/2021/05/blog-post.html}{1/s}\;\ldots\;単位ステップ凾数のラプラス変換, \\X&=&\frac{sx_0 +v_0 +2\gamma x_0 }{\left(s-\lambda_1\right)\left(s-\lambda_2\right)}+\frac{F}{m}\frac{1}{\left(s-\lambda_1\right)\left(s-\lambda_2\right)}U \\&=&\frac{sx_0 +v_0 +2\gamma x_0 }{\left(s-\lambda_1\right)\left(s-\lambda_2\right)}+\frac{F}{m}\frac{1}{\left(s-\lambda_1\right)\left(s-\lambda_2\right)}\frac{1}{s} \\&=&\frac{C_1 }{s-\lambda_1}+\frac{C_2 }{s-\lambda_2} +\frac{F}{m}\left\{ \frac{C_3}{s-\lambda_1} +\frac{C_4}{s-\lambda_2} +\frac{C_5}{s} \right\} \\&=&\frac{C_1 \left(s-\lambda_2\right)+C_2 \left(s-\lambda_1\right)}{\left(s-\lambda_1\right)\left(s-\lambda_2\right)} +\frac{F}{m}\left\{ \frac{ C_3\left(s-\lambda_2\right)s+C_4\left(s-\lambda_1\right)s+C_5\left(s-\lambda_1\right)\left(s-\lambda_2\right) }{ s\left(s-\lambda_1\right)\left(s-\lambda_2\right)} \right\} \\&=&\frac{C_1 \left(s-\lambda_2\right)+C_2 \left(s-\lambda_1\right)}{\left(s-\lambda_1\right)\left(s-\lambda_2\right)} +\frac{F}{m}\left\{ \frac{ C_3s^2-C_3\lambda_2s+C_4s^2-C_4\lambda_1s+C_5\left\{s^2-\left(\lambda_1+\lambda_2\right)s+\lambda_1\lambda_2\right\} }{ s\left(s-\lambda_1\right)\left(s-\lambda_2\right)} \right\} \\&=&\frac{C_1 \left(s-\lambda_2\right)+C_2 \left(s-\lambda_1\right)}{\left(s-\lambda_1\right)\left(s-\lambda_2\right)} +\frac{F}{m}\left\{ \frac{ C_3s^2-C_3\lambda_2s+C_4s^2-C_4\lambda_1s+C_5s^2-C_5\left(\lambda_1+\lambda_2\right)s+C_5\lambda_1\lambda_2 }{ s\left(s-\lambda_1\right)\left(s-\lambda_2\right)} \right\} \\&=&\frac{(C_1 +C_2 )s-(C_1 \lambda_2+C_2 \lambda_1)}{\left(s-\lambda_1\right)\left(s-\lambda_2\right)} +\frac{F}{m}\left[ \frac{ \left(C_3+C_4+C_5\right)s^2 +\left\{-C_3\lambda_2-C_4\lambda_1-C_5(\lambda_1+\lambda_2)\right\}s +C_5\lambda_1\lambda_2 } { s\left(s-\lambda_1\right)\left(s-\lambda_2\right)} \right] \end{eqnarray}$$

部分分数分解 第1項分子の比較

$$\begin{eqnarray} sx_0 +v_0 +2\gamma x_0&=&\left(C_1 +C_2 \right)s-\left(C_1 \lambda_2+C_2 \lambda_1\right) \end{eqnarray}$$ $$\left\{\begin{eqnarray} x_0&=&C_1 +C_2 \\v_0 +2\gamma x_0&=&-\left(C_1 \lambda_2+C_2 \lambda_1\right) \end{eqnarray}\right.$$

部分分数分解  \(C_2\)

$$\begin{eqnarray} x_0&=&C_1+C_2 \\C_1&=&x_0-C_2 \\v_0+2\gamma x_0&=&-\left\{\left(x_0-C_2\right)\lambda_2+C_2\lambda_1\right\} \\&=&-\lambda_2x_0+C_2\lambda_2-C_2\lambda_1 \\v_0+2\gamma x_0+\lambda_2 x_0&=&C_2\left(\lambda_2-\lambda_1\right) \\C_2 &=&\frac{v_0+2\gamma x_0+\lambda_2 x_0}{\lambda_2-\lambda_1} \\&&\;\ldots\;\lambda_{1,2}=\frac{-2\gamma\pm\sqrt{\left(2\gamma\right)^2-4\cdot1\cdot\omega_0^2}}{2\cdot1}=-\gamma\pm\sqrt{\gamma^2-\omega_0^2}=-\gamma\pm\xi \\&&\;\ldots\;\lambda_2-\lambda_1=-\gamma-\xi -\left(-\gamma+\xi \right)=-2\xi \\&=&\frac{v_0+2\gamma x_0+\left(-\gamma-\xi \right) x_0}{-2\xi } \\&=&\frac{v_0+\gamma x_0-\xi x_0}{-2\xi } \\&=&\frac{v_0+\gamma x_0}{-2\xi }-\frac{\xi x_0}{-2\xi } \\&=&\frac{x_0}{2}-\frac{v_0+\gamma x_0}{2\xi } \end{eqnarray}$$

部分分数分解 \(C_1\)

$$\begin{eqnarray} C_1&=&x_0-C_2 \\&=&x_0-\left(\frac{x_0}{2}-\frac{v_0+\gamma x_0}{2\xi }\right) \\&=&\frac{x_0}{2}+\frac{v_0+\gamma x_0}{2\xi } \end{eqnarray}$$

部分分数分解 第2項分子の比較

$$\begin{eqnarray} 1&=&\left(C_3+C_4+C_5\right)s^2 +\left\{-C_3\lambda_2-C_4\lambda_1-C_5(\lambda_1+\lambda_2)\right\}s +C_5\lambda_1\lambda_2 \end{eqnarray}$$ $$\left\{\begin{eqnarray} 0&=&C_3+C_4+C_5 \\0&=&-C_3\lambda_2-C_4\lambda_1-C_5(\lambda_1+\lambda_2) \\1&=&C_5\lambda_1\lambda_2 \end{eqnarray}\right.$$

部分分数分解 \(C_5\)

$$\begin{eqnarray} 1&=&C_5\lambda_1\lambda_2\;\ldots\;第3式 \\C_5&=&\frac{1}{\lambda_1\lambda_2} \\&=&\frac{1}{\gamma^2-\xi^2} \\&&\;\ldots\;\lambda_{1,2}=-\gamma\pm\xi \\&&\;\ldots\;\lambda_1\lambda_2=\left(-\gamma+\xi\right)\left(-\gamma-\xi\right)=\left(-\gamma\right)^2-\xi^2=\gamma^2-\xi^2 \\&=&\frac{1}{\omega_0^2} \\&&\;\ldots\;\gamma^2-\xi^2=\gamma^2-\left(\sqrt{\gamma^2-\omega_0^2}\right)^2=\gamma^2-\gamma^2+\omega_0^2=\omega_0^2 \end{eqnarray}$$

部分分数分解 \(C_3,\;C_4\)

$$\begin{eqnarray} 0-0&=&(C_3+C_4+C_5)\lambda_2-C_3\lambda_2-C_4\lambda_1-C_5(\lambda_1+\lambda_2) \;\ldots\;第1式\cdot\lambda_2+第2式 \\0&=&\color{red}{C_3\lambda_2}\color{black}{+C_4\lambda_2}\color{blue}{+C_5\lambda_2}\color{red}{-C_3\lambda_2}\color{black}{-C_4\lambda_1}-C_5\lambda_1\color{blue}{-C_5\lambda_2} \\0&=&C_4(\lambda_2-\lambda_1)-C_5\lambda_1 \\C_4(\lambda_2-\lambda_1)&=&C_5\lambda_1 \\C_4&=&C_5\frac{\lambda_1}{\lambda_2-\lambda_1} \\&=&\frac{1}{\lambda_1\lambda_2}\frac{\lambda_1}{\lambda_2-\lambda_1} \\&=&\frac{1}{\lambda_2}\frac{1}{\lambda_2-\lambda_1} \\&=&\frac{1}{\lambda_2^2-\lambda_1\lambda_2} \\&=&\frac{1}{\left(-\gamma-\xi\right)^2-\left(-\gamma+\xi\right)\left(-\gamma-\xi\right)} \\&=&\frac{1}{\gamma^2+2\gamma\xi+\xi^2-\left(\gamma^2-\xi^2\right)} \\&=&\frac{1}{\gamma^2+2\gamma\xi+\xi^2-\gamma^2+\xi^2} \\&=&\frac{1}{2\gamma\xi+2\xi^2} \\&=&\frac{1}{2\xi\left(\gamma+\xi\right)} \\&=&\frac{1}{2\xi\left(\gamma+\xi\right)}\frac{\gamma-\xi}{\gamma-\xi} \\&=&\frac{\gamma-\xi}{2\xi\left(\gamma^2-\xi^2\right)} \\&=&\frac{\gamma-\xi}{2\xi\omega_0^2} \\&=&\frac{1}{\omega_0^2}\frac{\gamma-\xi}{2\xi} \\0&=&C_3+C_4+C_5\;\ldots\;第1式 \\C_3&=&-C_4-C_5 \\&=&-\frac{1}{\omega_0^2}\frac{\gamma-\xi}{2\xi}-\frac{1}{\omega_0^2} \\&=&\frac{-1}{\omega_0^2}\left(\frac{\gamma-\xi}{2\xi}+1\right) \\&=&\frac{-1}{\omega_0^2}\left(\frac{\gamma-\xi}{2\xi}+\frac{2\xi}{2\xi}\right) \\&=&\frac{-1}{\omega_0^2}\left(\frac{\gamma+\xi}{2\xi}\right) \end{eqnarray}$$

部分分数分解 まとめる

$$\begin{eqnarray} X&=&\frac{\frac{x_0}{2}+\frac{v_0+\gamma x_0}{2\xi }}{s-\lambda_1} +\frac{\frac{x_0}{2}-\frac{v_0+\gamma x_0}{2\xi }}{s-\lambda_2} +\frac{F}{m}\left\{ \frac{\frac{-1}{\omega_0^2}\left(\frac{\gamma+\xi}{2\xi}\right)}{s-\lambda_1} +\frac{\frac{1}{\omega_0^2}\frac{\gamma-\xi}{2\xi}}{s-\lambda_2} + \frac{\frac{1}{\omega_0^2}}{s} \right\} \end{eqnarray}$$

逆ラプラス変換

$$\begin{eqnarray} \mathfrak{L}^{-1}\left[X\right]&=&\mathfrak{L}^{-1}\left[ C_1 \frac{1}{s-\lambda_1}+C_2 \frac{1}{s-\lambda_2} +\frac{F}{m}\left\{ C_3 \frac{1}{s-\lambda_1}+C_4 \frac{1}{s-\lambda_2}+C_5\frac{1}{s} \right\} \right] \\&=&C_1 \mathfrak{L}^{-1}\left[\frac{1}{s-\lambda_1}\right] +C_2 \mathfrak{L}^{-1}\left[\frac{1}{s-\lambda_2}\right] +\frac{F}{m}C_3\mathfrak{L}^{-1}\left[\frac{1}{s-\lambda_1}\right] +\frac{F}{m}C_4\mathfrak{L}^{-1}\left[\frac{1}{s-\lambda_2}\right] +\frac{F}{m}C_5\mathfrak{L}^{-1}\left[\frac{1}{s}\right] \\&=&\left\{ C_1 \mathfrak{L}^{-1}\left[\frac{1}{s-\lambda_1}\right] +C_2 \mathfrak{L}^{-1}\left[\frac{1}{s-\lambda_2}\right] \right\} +\frac{F}{m}\left\{ C_3\mathfrak{L}^{-1}\left[\frac{1}{s-\lambda_1}\right] +C_4\mathfrak{L}^{-1}\left[\frac{1}{s-\lambda_2}\right] \right\} +\left\{ \frac{F}{m}C_5\mathfrak{L}^{-1}\left[\frac{1}{s}\right] \right\} \end{eqnarray}$$

逆ラプラス変換  第1項

\(\gamma \lt \omega_0(\xiが虚数の場合)\) $$\begin{eqnarray} \\&&C_1 \mathfrak{L}^{-1}\left[\frac{1}{s-\lambda_1}\right] +C_2 \mathfrak{L}^{-1}\left[\frac{1}{s-\lambda_2}\right] \\&=&C_1 e^{\lambda_1 t}+C_2 e^{\lambda_2 t} \;\ldots\;\mathfrak{L}^{-1}\left[ \frac{1}{s+a} \right]=e^{-at} \\&=&\left(\frac{x_0}{2}+\frac{v_0+\gamma x_0}{2\xi }\right) e^{\lambda_1 t} +\left(\frac{x_0}{2}-\frac{v_0+\gamma x_0}{2\xi }\right) e^{\lambda_2 t} \\&=&\left(\frac{x_0}{2}+\frac{v_0+\gamma x_0}{2\xi }\right) e^{\left(-\gamma+\xi\right) t} +\left(\frac{x_0}{2}-\frac{v_0+\gamma x_0}{2\xi }\right) e^{\left(-\gamma-\xi\right) t} \\&&\;\ldots\;\lambda_{1,2} =-\frac{c}{2m}\pm\sqrt{\left(\frac{c}{2m}\right)^2-\left(\sqrt{\frac{k}{m}}\right)^2} =-\gamma\pm\sqrt{\gamma^2-\omega_0^2} =-\gamma\pm\xi \\&=&\left(\frac{x_0}{2}+\frac{v_0+\gamma x_0}{2\xi }\right) e^{-\gamma t}e^{\xi t} +\left(\frac{x_0}{2}-\frac{v_0+\gamma x_0}{2\xi }\right) e^{-\gamma t}e^{-\xi t} \;\ldots\;a^{A+B}=a^Aa^B \\&=& e^{-\gamma t}\left\{ \left(\frac{x_0}{2}+\frac{v_0+\gamma x_0}{2\omega i }\right)e^{\omega i t} +\left(\frac{x_0}{2}-\frac{v_0+\gamma x_0}{2\omega i }\right)e^{-\omega i t} \right\} \\&&\;\ldots\;\gamma \lt \omega_0(\xiが虚数の場合),\;\xi=\sqrt{\gamma^2-\omega_0^2}=\sqrt{\left|\gamma^2-\omega_0^2\right|}\;i=\omega i \\&=& e^{-\gamma t}\left[ \left(\frac{x_0}{2}+\frac{v_0+\gamma x_0}{2\omega i }\right)\left\{\cos{\left(\omega t\right)}+i\sin{\left(\omega t\right)}\right\} +\left(\frac{x_0}{2}-\frac{v_0+\gamma x_0}{2\omega i }\right)\left\{\cos{\left(-\omega t\right)}+i\sin{\left(-\omega t\right)}\right\} \right] \\&=& e^{-\gamma t}\left[ \left(\frac{x_0}{2}+\frac{v_0+\gamma x_0}{2\omega i }\right)\left\{\cos{\left(\omega t\right)}+i\sin{\left(\omega t\right)}\right\} +\left(\frac{x_0}{2}-\frac{v_0+\gamma x_0}{2\omega i }\right)\left\{\cos{\left(\omega t\right)}-i\sin{\left(\omega t\right)}\right\} \right] \\&&\;\ldots\;\cos{\left(-\omega t\right)}=\cos{\left(\omega t\right)},\;\sin{\left(-\omega t\right)}=-\sin{\left(\omega t\right)} \\&=& e^{-\gamma t}\left[ \left(\frac{x_0}{2}+\frac{v_0+\gamma x_0}{2\omega i }\right)\cos{\left(\omega t\right)} +\left(\frac{x_0}{2}+\frac{v_0+\gamma x_0}{2\omega i }\right)i\sin{\left(\omega t\right)} +\left(\frac{x_0}{2}-\frac{v_0+\gamma x_0}{2\omega i }\right)\cos{\left(\omega t\right)} -\left(\frac{x_0}{2}-\frac{v_0+\gamma x_0}{2\omega i }\right)i\sin{\left(\omega t\right)} \right] \\&=& e^{-\gamma t}\left[ \left\{ \left(\frac{x_0}{2}+\frac{v_0+\gamma x_0}{2\omega i }\right) +\left(\frac{x_0}{2}-\frac{v_0+\gamma x_0}{2\omega i }\right) \right\}\cos{\left(\omega t\right)} +\left\{ \left(\frac{x_0}{2}+\frac{v_0+\gamma x_0}{2\omega i }\right) -\left(\frac{x_0}{2}-\frac{v_0+\gamma x_0}{2\omega i }\right) \right\}i\sin{\left(\omega t\right)} \right] \\&=& e^{-\gamma t}\left\{ x_0\cos{\left(\omega t\right)} +\frac{v_0+\gamma x_0}{\omega i }i\sin{\left(\omega t\right)} \right\} \\&=& e^{-\gamma t}\left\{ x_0\cos{\left(\omega t\right)} +\frac{v_0+\gamma x_0}{\omega }\sin{\left(\omega t\right)} \right\} \;\ldots\;\frac{i}{i}=1 \end{eqnarray}$$

逆ラプラス変換 第2項

\(\gamma \lt \omega_0(\xiが虚数の場合)\) $$\begin{eqnarray} \\&&\frac{F}{m}\left\{ C_3\mathfrak{L}^{-1}\left[\frac{1}{s-\lambda_1}\right] +C_4\mathfrak{L}^{-1}\left[\frac{1}{s-\lambda_2}\right] \right\} \\&=&\frac{F}{m}\left(C_3 e^{\lambda_1 t}+C_4 e^{\lambda_2 t}\right) \;\ldots\;\mathfrak{L}^{-1}\left[ \frac{1}{s+a} \right]=e^{-at} \\&=&\frac{F}{m} \left\{ -\frac{1}{\omega_0^2}\left(\frac{\gamma+\xi}{2\xi}\right)e^{\lambda_1 t} +\frac{1}{\omega_0^2}\left(\frac{\gamma-\xi}{2\xi}\right) e^{\lambda_2 t} \right\} \\&=&\frac{F}{m}\frac{1}{\omega_0^2} \left\{ -\left(\frac{\gamma}{2\xi}+\frac{\xi}{2\xi}\right)e^{\lambda_1 t} +\left(\frac{\gamma}{2\xi}-\frac{\xi}{2\xi}\right)e^{\lambda_2 t} \right\} \\&=&\frac{F}{k} \left\{ -\left(\frac{\gamma}{2\xi}+\frac{1}{2}\right)e^{\lambda_1 t} +\left(\frac{\gamma}{2\xi}-\frac{1}{2}\right)e^{\lambda_2 t} \right\} \\&&\;\ldots\;\omega_0=\sqrt{\frac{k}{m}},\;\omega_0^2=\frac{k}{m},\;m\omega_0^2=k \\&=&\frac{F}{k} \left\{ -\left(\frac{\gamma}{2\xi}+\frac{1}{2}\right)e^{\left(-\gamma+\xi\right) t} +\left(\frac{\gamma}{2\xi}-\frac{1}{2}\right)e^{\left(-\gamma-\xi\right) t} \right\} \\&&\;\ldots\;\lambda_{1,2} =-\frac{c}{2m}\pm\sqrt{\left(\frac{c}{2m}\right)^2-\left(\sqrt{\frac{k}{m}}\right)^2} =-\gamma\pm\sqrt{\gamma^2-\omega_0^2} =-\gamma\pm\xi \\&=&\frac{F}{k} \left\{ -\left(\frac{\gamma}{2\xi}+\frac{1}{2}\right)e^{-\gamma t}e^{\xi t} +\left(\frac{\gamma}{2\xi}-\frac{1}{2}\right)e^{-\gamma t}e^{-\xi t} \right\} \\&=&\frac{F}{k}e^{-\gamma t} \left\{ -\left(\frac{\gamma}{2\omega i}+\frac{1}{2}\right)e^{\omega i t} +\left(\frac{\gamma}{2\omega i}-\frac{1}{2}\right)e^{-\omega i t} \right\} \\&&\;\ldots\;\gamma \lt \omega_0(\xiが虚数の場合),\;\xi=\sqrt{\gamma^2-\omega_0^2}=\sqrt{\left|\gamma^2-\omega_0^2\right|}\;i=\omega i \\&=&\frac{F}{k}e^{-\gamma t} \left[ -\left(\frac{\gamma}{2\omega i}+\frac{1}{2}\right)\left\{\cos{\left(\omega t\right)}+i\sin{\left(\omega t\right)}\right\} +\left(\frac{\gamma}{2\omega i}-\frac{1}{2}\right)\left\{\cos{\left(-\omega t\right)}+i\sin{\left(-\omega t\right)}\right\} \right] \\&=&\frac{F}{k}e^{-\gamma t} \left[ -\left(\frac{\gamma}{2\omega i}+\frac{1}{2}\right)\left\{\cos{\left(\omega t\right)}+i\sin{\left(\omega t\right)}\right\} +\left(\frac{\gamma}{2\omega i}-\frac{1}{2}\right)\left\{\cos{\left(\omega t\right)}-i\sin{\left(\omega t\right)}\right\} \right] \\&&\;\ldots\;\cos{\left(-\omega t\right)}=\cos{\left(\omega t\right)},\;\sin{\left(-\omega t\right)}=-\sin{\left(\omega t\right)} \\&=&\frac{F}{k}e^{-\gamma t} \left[ -\left(\frac{\gamma}{2\omega i}+\frac{1}{2}\right)\cos{\left(\omega t\right)} -\left(\frac{\gamma}{2\omega i}+\frac{1}{2}\right)i\sin{\left(\omega t\right)} +\left(\frac{\gamma}{2\omega i}-\frac{1}{2}\right)\cos{\left(\omega t\right)} -\left(\frac{\gamma}{2\omega i}-\frac{1}{2}\right)i\sin{\left(\omega t\right)} \right] \\&=&\frac{F}{k}e^{-\gamma t} \left[ \left\{ -\left(\frac{\gamma}{2\omega i}+\frac{1}{2}\right) +\left(\frac{\gamma}{2\omega i}-\frac{1}{2}\right) \right\}\cos{\left(\omega t\right)} +\left\{ -\left(\frac{\gamma}{2\omega i}+\frac{1}{2}\right) -\left(\frac{\gamma}{2\omega i}-\frac{1}{2}\right) \right\}i\sin{\left(\omega t\right)} \right] \\&=&\frac{F}{k}e^{-\gamma t} \left\{ -\cos{\left(\omega t\right)} -\frac{\gamma}{\omega i}i\sin{\left(\omega t\right)} \right\} \\&=&-\frac{F}{k}e^{-\gamma t} \left\{ \cos{\left(\omega t\right)} +\frac{\gamma}{\omega}\sin{\left(\omega t\right)} \right\} \;\ldots\;\frac{i}{i}=1 \end{eqnarray}$$ $$\begin{eqnarray} \frac{\gamma}{\omega} &=&\frac{\gamma}{\sqrt{\left|\gamma^2-\omega_0^2\right|}} \;\ldots\;\omega=\sqrt{\left|\gamma^2-\omega_0^2\right|} \\&=&\frac{\gamma}{\sqrt{ \frac{\omega_0^2}{\omega_0^2} \left| \gamma^2-\omega_0^2 \right| }} \\&=&\frac{\gamma}{\sqrt{ \omega_0^2 \left| \frac{\gamma^2}{\omega_0^2}-\frac{\omega_0^2}{\omega_0^2} \right| }} \\&=&\frac{\gamma}{\omega_0\sqrt{\left|\zeta^2-1\right|}} \;\ldots\;\zeta=\frac{\gamma}{\omega_0} \\&=&\frac{\zeta}{\sqrt{\left|\zeta^2-1\right|}} \;\ldots\;\zeta=\frac{\gamma}{\omega_0} \end{eqnarray}$$

逆ラプラス変換  第3項

$$\begin{eqnarray} \\&&\frac{F}{m}C_5\mathfrak{L}^{-1}\left[\frac{1}{s}\right] \\&=&\frac{F}{m}\frac{1}{\omega_0^2}\mathfrak{L}^{-1}\left[\frac{1}{s}\right] \\&=&\frac{F}{m}\frac{1}{\omega_0^2}\cdot1 \;\ldots\;\mathfrak{L}^{-1}\left[ \frac{1}{s} \right]=1 \\&=&\frac{F}{k} \\&&\;\ldots\;\omega_0=\sqrt{\frac{k}{m}},\;\omega_0^2=\frac{k}{m},\;m\omega_0^2=k \end{eqnarray}$$

逆ラプラス変換  第1,2,3項

$$\begin{eqnarray} x(t)&=&\left\{ C_1 \mathfrak{L}^{-1}\left[\frac{1}{s-\lambda_1}\right] +C_2 \mathfrak{L}^{-1}\left[\frac{1}{s-\lambda_2}\right] \right\} +\frac{F}{m}\left\{ C_3\mathfrak{L}^{-1}\left[\frac{1}{s-\lambda_1}\right] +C_4\mathfrak{L}^{-1}\left[\frac{1}{s-\lambda_2}\right] \right\} +\left\{ \frac{F}{m}C_5\mathfrak{L}^{-1}\left[\frac{1}{s}\right] \right\} \\&=& e^{-\gamma t}\left\{ x_0\cos{\left(\omega t\right)} +\frac{v_0+\gamma x_0}{\omega}\sin{\left(\omega t\right)} \right\} -\frac{F}{k}e^{-\gamma t} \left\{ \cos{\left(\omega t\right)} +\frac{\gamma}{\omega}\sin{\left(\omega t\right)} \right\} +\frac{F}{k} \\&=& e^{-\gamma t}\left\{ x_0\cos{\left(\omega t\right)} +\frac{v_0+\gamma x_0}{\omega}\sin{\left(\omega t\right)} \right\} +\frac{F}{k}\left[1-e^{-\gamma t} \left\{ \cos{\left(\omega t\right)} +\frac{\gamma}{\omega}\sin{\left(\omega t\right)} \right\} \right] \\&=& \color{red}{ x_0e^{-\gamma t}\left\{ \cos{\left(\omega t\right)} +\frac{\gamma}{\omega}\sin{\left(\omega t\right)} \right\}} \color{blue}{ + v_0e^{-\gamma t}\left\{ \frac{1}{\omega}\sin{\left(\omega t\right)} \right\} } \color{green}{ +\frac{F}{k}\left[1-e^{-\gamma t} \left\{ \cos{\left(\omega t\right)} +\frac{\gamma}{\omega}\sin{\left(\omega t\right)} \right\} \right] } \\&&\color{black}{\;\ldots\;} \color{red}{第1項:初期位置による振動} ,\;\color{blue}{第2項:初期速度による振動} ,\;\color{green}{第3項:ステップ入力による振動} \\&=& \color{green}{ \frac{F}{k} } \color{red}{ +\left(x_0 -\frac{F}{k}\right)e^{-\gamma t} \left\{ \cos{\left(\omega t\right)} +\frac{\gamma}{\omega}\sin{\left(\omega t\right)} \right\} } \color{blue}{ + v_0e^{-\gamma t}\left\{ \frac{1}{\omega}\sin{\left(\omega t\right)} \right\} } \\&&\color{black}{\;\ldots\;} \color{green}{第1項:ステップ入力により釣り合い位置が変化} ,\;\color{red}{第2項:初期位置と釣り合い位置の差を改めて初期位置として減衰振動} ,\;\color{blue}{第3項:初期速度による振動} \end{eqnarray}$$

0 件のコメント:

コメントを投稿