ラプラス変換
$$\begin{eqnarray}
\mathfrak{L}\left[ {f\left( t \right)} \right]
&=&\int_0^\infty {f\left( t \right){e^{–st}}}\mathrm{d}t
\end{eqnarray}$$
\( \int_0^t g(u) \mathrm{d}u \)のラプラス変換
$$\begin{eqnarray}
f\left( t \right)&=&\int_0^t g(u) \mathrm{d}u
\\\mathfrak{L}\left[ {f\left( t \right)} \right]
&=& \int_0^\infty {\left\{\int_0^t g(u) \mathrm{d}u\right\}{e^{ –st}}}\mathrm{d}t
\\&=& \left[ \left\{\int_0^t g(u) \mathrm{d}u\right\} {\frac{–1}{s}e^{-st}} \right]_0^{\infty}
-\int_0^\infty {g(t) \cdot {\frac{–1}{s}e^{–st}}}\mathrm{d}t
\\&&\;\cdots\;\int_a^b{f'\left( t \right) g\left( t \right) }\mathrm{d}t=\left[f\left( t \right) g\left( t
\right)\right]_a^b-\int_a^b{f\left( t \right) g'\left( t \right) }\mathrm{d}t\;\;(f':fの微分,\;g':gの部分)
\\&&\;\cdots\;\int e^{at} \mathrm{d}t =\frac{1}{a}e^{at}+C
\\&&\;\cdots\;\href{https://shikitenkai.blogspot.com/2021/04/blog-post.html}{\frac{\mathrm{d}}{\mathrm{d}t}\int_0^t g\left(u\right)\mathrm{d}t
=\frac{\mathrm{d}}{\mathrm{d}t}\left[G\left(t\right)-G\left(0\right)\right]
=\frac{\mathrm{d}}{\mathrm{d}t}G\left(t\right)-\frac{\mathrm{d}}{\mathrm{d}t}G\left(0\right)
=g\left(t\right)-0
=g\left(t\right)}
\\&=& \left[ \left\{\int_0^\infty g(u) \mathrm{d}u\right\} {\frac{–1}{s}e^{-s\infty}}
-\left\{\int_0^0 g(u)\mathrm{d}u\right\} {\frac{–1}{s}e^{-s0}} \right]
+\frac{1}{s}\int_0^\infty {g(t) {e^{–st}}}\mathrm{d}t
\\&&\;\cdots\;e^{-\infty}=0,\;\int_t^t f(x)\mathrm{d}x=\left[F(t)-F(t)\right]=0
\\&=& \left[0-0 \right]
+\frac{1}{s}\int_0^\infty {g(t) {e^{–st}}}\mathrm{d}t
\\&=& \frac{1}{s} \mathfrak{L}\left[ {g\left( t \right)} \right]
\end{eqnarray}$$
0 件のコメント:
コメントを投稿