ラプラス変換
$$\begin{eqnarray}
\mathfrak{L}\left[ {f\left( t \right)} \right]
&=&\int_0^\infty {f\left( t \right){e^{–st}}}\mathrm{d}t
\end{eqnarray}$$
\( \frac{\mathrm{d}f}{\mathrm{d}t} \)のラプラス変換
$$\begin{eqnarray}
f\left( t \right)&=&\frac{\mathrm{d}g\left( t \right)}{\mathrm{d}t}
\\\mathfrak{L}\left[ {g\left( t \right)} \right]
&=& \int_0^\infty {\frac{\mathrm{d}g\left( t \right)}{\mathrm{d}t} {e^{ –st}}}\mathrm{d}t
\\&=& \left[ g\left( t \right) {e^{-st}} \right]_0^{\infty}
-\int_0^\infty {\frac{\mathrm{d}g\left( t\right)}{\mathrm{d}t} {\left(–s\right)e^{ –st}}}\mathrm{d}t
\\&&\;\cdots\;\int_a^b{f'\left( t \right) g\left( t \right) }\mathrm{d}t=\left[f\left( t \right) g\left( t
\right)\right]_a^b-\int_a^b{f\left( t \right) g'\left( t \right) }\mathrm{d}t\;\;(f':fの微分,\;g':gの部分)
\\&&\;\cdots\;\frac{\mathrm{d}}{\mathrm{d}t}e^{at}=ae^{at}
\\&=& \left[ g\left( \infty \right) {e^{-s\infty}} - g\left( 0 \right) {e^{-s0}} \right]
-\left(–s\right)\int_0^\infty {\frac{\mathrm{d}g\left( t\right)}{\mathrm{d}t} {e^{ –st}}}\mathrm{d}t
\\&=& \left[ 0 - g\left( 0 \right) \cdot {1} \right]
-\left(–s\right)\int_0^\infty {\frac{\mathrm{d}g\left( t\right)}{\mathrm{d}t} {e^{ –st}}}\mathrm{d}t
\\&&\;\cdots\;e^{-\infty}=0,\;e^{0}=1
\\&=&-g\left( 0 \right)
+s\int_0^\infty {\frac{\mathrm{d}g\left( t\right)}{\mathrm{d}t} {e^{ –st}}}\mathrm{d}t
\\&=&-g\left( 0 \right)+s\mathfrak{L}\left[ {g\left( t \right)} \right]
\\&=&s\mathfrak{L}\left[ {g\left( t \right)} \right]-g\left( 0 \right)
\end{eqnarray}$$
0 件のコメント:
コメントを投稿