バネマスダンパー系
\(\gamma, \omega_0\)による比較
$$\begin{eqnarray}
\ddot{x}(t)
&+&\frac{c}{m}\dot{x}(t)
&+&\frac{k}{m}x(t)
&=&0
\\
\frac{\mathrm{d^2}}{\mathrm{d^2}t}x(t)
&+&\frac{c}{m}\frac{\mathrm{d}}{\mathrm{d}t}x(t)
&+&\frac{k}{m}x(t)
&=&0
\end{eqnarray}$$
$$\begin{eqnarray}
\gamma&=&\frac{c}{2m}
\\\omega_0^2&=&\frac{k}{m}
\\\omega^2&=&\left|\gamma^2-\omega_0^2\right|
\\&=&\left|\frac{\omega_0^2}{\omega_0^2}\left(\gamma^2-\omega_0^2\right)\right|
\\&=&\omega_0^2\left|\left(\frac{\gamma}{\omega_0}\right)^2-1\right|
\\&=&\omega_0^2\left|\zeta^2-1\right|
\;\ldots\;\zeta=\frac{\gamma}{\omega_0}
\\\omega&=&\sqrt{\omega_0^2\left|\zeta^2-1\right|}
\\&=&\omega_0\sqrt{\left|\zeta^2-1\right|}
\end{eqnarray}$$
$$\begin{eqnarray}
x(t)&=&
&\left.x_0\cos{\left(\omega_0 t\right)}\right.
&\left.+\frac{v_0 }{\omega_0} \sin{\left(\omega_0 t\right)}\right.
&\;\ldots\;\href{https://shikitenkai.blogspot.com/2021/04/0.html}{\gamma=0}
&\href{https://shikitenkai.blogspot.com/2021/04/0.html}{単振動}&\zeta=0
\\&=& e^{-\gamma t}
&\left[x_0 \cos{\left(\omega t\right)}\right.
&\left.+\frac{v_0 +\gamma x_0 }{\omega}\sin{\left(\omega t\right)}\right]
&\;\ldots\;\href{https://shikitenkai.blogspot.com/2021/04/00.html}{0\lt\gamma\lt\omega_0}
&\href{https://shikitenkai.blogspot.com/2021/04/00.html}{減衰振動}&0\lt\zeta\lt1
\\&=&e^{-\gamma t}
&\left[x_0\right.
&\left.+\left(v_0+\gamma x_0\right)t\right]
&\;\ldots\;\href{https://shikitenkai.blogspot.com/2021/04/0_56.html}{\gamma=\omega_0}
&\href{https://shikitenkai.blogspot.com/2021/04/0_56.html}{臨界減衰}&\zeta=1
\\&=&e^{-\gamma t}
&\left[x_0 \cosh\left(\omega t\right)\right.
&\left.+\frac{v_0 +\gamma x_0 }{\omega}\sinh{\left(\omega t \right)}\right]
&\;\ldots\;\href{https://shikitenkai.blogspot.com/2021/04/0_17.html}{\omega_0\lt\gamma}
&\href{https://shikitenkai.blogspot.com/2021/04/0_17.html}{過減衰}&1\lt\zeta
\end{eqnarray}$$

0 件のコメント:
コメントを投稿