間違いしかありません.コメントにてご指摘いただければ幸いです(気が付いた点を特に断りなく頻繁に書き直していますのでご注意ください).

バネマスダンパー系,臨界減衰(γ=ω0)の場合

バネマスダンパー系

γ=ω0

λ1,2=γ±γ2ω02|γ=ω0λ1,2=γ±γ2ω02=ω0±ω02ω02=ω0 x(t)=C(t)eω0tx˙=C(t)eω0tω0C(t)eω0t(fg)=fg+fgx¨={C(t)eω0tω0C(t)eω0t}+{ω0C(t)eω0t+ω02C(t)eω0t}(fg)=fg+fg=C(t)eω0t2ω0C(t)eω0t+ω02C(t)eω0t x¨+2γx˙+ω02x|γ=ω0=0x¨+2ω0x˙+ω02x=0[C(t)eω0t2ω0C(t)eω0t+ω02C(t)eω0t]+2ω0[C(t)eω0tω0C(t)eω0t]+ω02C(t)eω0t=0C(t)eω0t2ω0C(t)eω0t+ω02C(t)eω0t+2ω0C(t)eω0t2ω02C(t)eω0t+ω02C(t)eω0t=0C(t)eω0t=0C(t)=0eω0t>0 C(t)=0C(t)=C1C(t)=C1t+C2x(t)=(C1t+C2)eω0t x(0)=(C1t+C2)eω0t|t=0=(C10+C2)eω00=C21=C2C2=x(0)=x0x(0)={C1eω0tω0(C1t+C2)eω0t}|t=0,C2=x0=C1eω00ω0(C10+x0)eω00=C11ω0(x0)1=C1ω0x0C1=x(0)+ω0x0=v0+ω0x0 x(t)=C(t)eω0t=(C1t+C2)eω0t={(v0+ω0x0)t+x0}eω0t={(v0+γx0)t+x0}eγtω0=γ=eγt{x0+(v0+γx0)t}=x0eγt(1+γt)+v0eγt(t)x0,v0

0 件のコメント:

コメントを投稿