間違いしかありません.コメントにてご指摘いただければ幸いです(気が付いた点を特に断りなく頻繁に書き直していますのでご注意ください).

バネマスダンパー系,臨界減衰(γ=ω0)の場合

バネマスダンパー系

\(\gamma=\omega_0\)

$$\begin{eqnarray} \lambda_{1,2}&=&\left.-\gamma\pm\sqrt{\gamma^2-\omega_0^2}\right|_{\gamma=\omega_0} \;\ldots\;\href{https://shikitenkai.blogspot.com/2021/04/12.html}{\lambda_{1,2}=-\gamma\pm\sqrt{\gamma^2-\omega_0^2}} \\&=&-\omega_0\pm\sqrt{\omega_0^2-\omega_0^2} \\&=&-\omega_0 \end{eqnarray}$$ $$\begin{eqnarray} x(t)&=&C(t) e^{-\omega_0 t} \;\ldots\;定数変化法 \\\dot{x}&=&C'(t)e^{-\omega_0 t}-\omega_0 C(t) e^{-\omega_0 t}&\;\ldots\;\href{https://shikitenkai.blogspot.com/2020/02/blog-post.html}{(fg)'=f'g+fg'} \\\ddot{x}&=&\left\{ C''(t)e^{-\omega_0 t}- \omega_0 C'(t) e^{-\omega_0 t} \right\} +\left\{ -\omega_0 C(t)' e^{-\omega_0 t} + \omega_0^2 C(t) e^{-\omega_0 t} \right\}&\;\ldots\;\href{https://shikitenkai.blogspot.com/2020/02/blog-post.html}{(fg)'=f'g+fg'} \\&=&C''(t)e^{-\omega_0 t}-2\omega_0 C'(t) e^{-\omega_0 t}+\omega_0^2 C(t) e^{-\omega_0 t} \end{eqnarray}$$ $$\begin{eqnarray} \left.\ddot{x}+2\gamma\dot{x}+\omega_0^2 x\right|_{\gamma=\omega_0}&=&0 \\\ddot{x}+2\omega_0\dot{x}+\omega_0^2 x&=&0 \\\left[C''(t)e^{-\omega_0 t}-2\omega_0 C'(t) e^{-\omega_0 t}+\omega_0^2 C(t) e^{-\omega_0 t}\right] +2\omega_0\left[C'(t)e^{-\omega_0 t}-\omega_0 C(t) e^{-\omega_0 t}\right] +\omega_0^2 C(t) e^{-\omega_0 t} &=&0 \\C''(t)e^{-\omega_0 t} \color{red} {-2\omega_0 C'(t)e^{-\omega_0 t}} \color{blue}{+ \omega_0^2 C(t) e^{-\omega_0 t}} \color{red} {+2\omega_0 C'(t)e^{-\omega_0 t}} \color{blue}{-2\omega_0^2 C(t) e^{-\omega_0 t}} \color{blue}{+ \omega_0^2 C(t) e^{-\omega_0 t}} &=&0 \\C''(t)e^{-\omega_0 t} &=&0 \\C''(t)&=&0\;\ldots\;e^{-\omega_0 t}\gt 0 \end{eqnarray}$$ $$\begin{eqnarray} C''(t)&=&0 \\C'(t)&=&C_1 \\C(t)&=&C_1 t + C_2 \\x(t)&=&\left(C_1 t + C_2\right)e^{-\omega_0 t} \end{eqnarray}$$ $$\begin{eqnarray} x(0)&=&\left.\left(C_1 t + C_2\right)e^{-\omega_0 t}\right|_{t=0} \\&=&\left(C_1 0 + C_2\right)e^{-\omega_0 0} \\&=&C_2\cdot 1=C_2 \\C_2&=&x(0)=x_0 \\x'(0)&=&\left.\left\{C_1e^{-\omega_0 t}-\omega_0\left(C_1 t + C_2\right)e^{-\omega_0 t}\right\}\right|_{t=0,C_2=x_0} \\&=&C_1e^{-\omega_0 0}-\omega_0\left(C_1 0 + x_0\right)e^{-\omega_0 0} \\&=&C_1\cdot1-\omega_0\left(x_0\right)\cdot1 \\&=&C_1-\omega_0x_0 \\C_1&=&x'(0)+\omega_0x_0=v_0+\omega_0x_0 \end{eqnarray}$$ $$\begin{eqnarray} x(t)&=&C(t)e^{-\omega_0 t} \\&=&\left(C_1 t+C_2\right)e^{-\omega_0 t} \\&=&\left\{\left(v_0+\omega_0x_0\right)t+x_0\right\}e^{-\omega_0 t} \\&=&\left\{\left(v_0+\gamma x_0\right)t+x_0\right\}e^{-\gamma t}\;\ldots\;\omega_0=\gamma \\&=&e^{-\gamma t}\left\{x_0+\left(v_0+\gamma x_0\right)t\right\} \\&=&\color{red}{x_0e^{-\gamma t} \left(1+\gamma t\right)} \color{blue}{+v_0e^{-\gamma t}\left( t\right)}\color{black}{} \;\ldots\;\color{red}{初期位置x_0による臨界減衰}\color{black}{},\;\color{blue}{初期速度v_0による臨界減衰} \end{eqnarray}$$

0 件のコメント:

コメントを投稿