バネマスダンパー系
\(\omega_0\lt\gamma\)
$$\begin{eqnarray}
\lambda_{1,2}&=&-\gamma\pm\sqrt{\gamma^2-\omega_0^2}
\;\ldots\;\href{https://shikitenkai.blogspot.com/2021/04/12.html}{\lambda_{1,2}=-\gamma\pm\sqrt{\gamma^2-\omega_0^2}}
\\&=&-\gamma\pm\sqrt{\omega^2}
\;\ldots\;\omega^2=\left|\gamma^2-\omega_0^2\right|,\;\gamma^2-\omega_0^2=\omega^2
\\&=&-\gamma\pm\omega
\end{eqnarray}$$
$$\begin{eqnarray}
C_{1,2} &=&\left.\frac{x_0 }{2}\pm\frac{v_0 +\gamma x_0 }{2\sqrt{\gamma^2-\omega_0^2}}\right|_{\gamma\gt\omega_0}
\;\ldots\;\href{https://shikitenkai.blogspot.com/2021/04/c1-c2.html}{
C_{1,2} =\frac{x_0 }{2}\pm\frac{v_0 +\gamma x_0 }{2\sqrt{\gamma^2-\omega_0^2}}
}
\\&=&\frac{x_0 }{2}\pm\frac{v_0 +\gamma x_0 }{2\sqrt{\omega^2}}
\\&=&\frac{x_0 }{2}\pm\frac{v_0 +\gamma x_0 }{2\omega}\;\ldots\;ただし\omega\ne0
\end{eqnarray}$$
$$\begin{eqnarray}
x(t)&=&C_1 e^{\lambda_1 t}+C_2 e^{\lambda_2 t}
\\&=&C_1 e^{\left(-\gamma+\omega\right)t}+C_2 e^{\left(-\gamma-\omega\right)t}
\\&=&C_1 e^{-\gamma t}e^{\omega t}+C_2 e^{-\gamma t}e^{-\omega t}
\\&=&e^{-\gamma t}\left\{C_1 e^{\omega t}+C_2 e^{-\omega t}\right\}
\\&=&e^{-\gamma t}\left[
\left\{\frac{x_0 }{2}+\frac{v_0 +\gamma x_0 }{2\omega}\right\}e^{\omega t}
+\left\{\frac{x_0 }{2}-\frac{v_0 +\gamma x_0 }{2\omega}\right\}e^{-\omega t}
\right]
\\&=&e^{-\gamma t}\left\{
\frac{x_0 }{2}e^{\omega t}+\frac{v_0 +\gamma x_0 }{2\omega}e^{\omega t}
+\frac{x_0 }{2}e^{-\omega t}-\frac{v_0 +\gamma x_0 }{2\omega}e^{-\omega t}
\right\}
\\&=&e^{-\gamma t}\left\{
\frac{x_0 }{2}\left(e^{\omega t}+e^{-\omega t}\right)+\frac{v_0 +\gamma x_0 }{2\omega}\left(e^{\omega t}-e^{-\omega t}\right)
\right\}
\\&=&e^{-\gamma t}\left\{
x_0 \frac{e^{\omega t}+e^{-\omega t}}{2}+\frac{v_0 +\gamma x_0 }{\omega}\frac{e^{\omega t}-e^{-\omega t}}{2}
\right\}
\\&=&e^{-\gamma t}\left\{
x_0 \cosh\left(\omega t\right)+\frac{v_0 +\gamma x_0 }{\omega}\sinh{\left(\omega t \right)}
\right\}
\\&&\;\ldots\;\cosh{\left(\omega t\right)}=\frac{e^{\omega t}+e^{-\omega t}}{2}, \sinh{\left(\omega t \right)}=\frac{e^{\omega t}-e^{-\omega t}}{2}
\\&=&\color{red}{x_0 e^{-\gamma t}\left\{
\cosh\left(\omega t\right)+\frac{\gamma }{\omega}\sinh{\left(\omega t \right)}
\right\}}
\color{blue}{+v_0 e^{-\gamma t}\left\{
\frac{1}{\omega}\sinh{\left(\omega t \right)}
\right\}}
\;\ldots\;\color{red}{初期位置x_0による過減衰}\color{black}{},\;\color{blue}{初期速度v_0による過減衰}
\\&=&
x_0 e^{-\gamma t}\left\{
\cosh\left(\omega t\right)+\frac{\zeta }{\sqrt{\zeta^2-1}}\sinh{\left(\omega t \right)}
\right\}
+v_0 e^{-\gamma t}\left\{
\frac{1}{\omega}\sinh{\left(\omega t \right)}
\right\}
\\&&\;\ldots\;\frac{\gamma}{\omega}
=\frac{\gamma}{\sqrt{\left|\gamma^2-\omega_0^2\right|}}
=\frac{\gamma}{\sqrt{\frac{\omega_0^2}{\omega_0^2}\left|\gamma^2-\omega_0^2\right|}}
=\frac{\gamma}{\sqrt{\omega_0^2\left|\frac{\gamma^2}{\omega_0^2}-\frac{\omega_0^2}{\omega_0^2}\right|}}
=\frac{\gamma}{\omega_0\sqrt{\left|\zeta^2-1\right|}}
=\frac{\zeta}{\sqrt{\left|\zeta^2-1\right|}}
\\&&\;\ldots\;\omega=\sqrt{\left|\gamma^2-\omega_0^2\right|},\;\zeta=\frac{\gamma}{\omega_0}
\end{eqnarray}$$
0 件のコメント:
コメントを投稿