バネマスダンパー系
\(0\lt\gamma\lt\omega_0\)
$$\begin{eqnarray}
\lambda_{1,2}&=&\left.-\gamma\pm\sqrt{\gamma^2-\omega_0^2}\right|_{0\lt\gamma\lt\omega_0}
\;\ldots\;\href{https://shikitenkai.blogspot.com/2021/04/12.html}{\lambda_{1,2}=-\gamma\pm\sqrt{\gamma^2-\omega_0^2}}
\\&=&-\gamma\pm\sqrt{\gamma^2-\omega_0^2}
\\&=&-\gamma\pm\sqrt{-\omega^2}
\;\ldots\;\omega^2=\left|\gamma^2-\omega_0^2\right|,\;\gamma^2-\omega_0^2=-\omega^2
\\&=&-\gamma\pm\omega\sqrt{-1}
\\&=&-\gamma\pm\omega i
\end{eqnarray}$$
$$\begin{eqnarray}
C_{1,2} &=&\left.\frac{x_0 }{2}\pm\frac{v_0 +\gamma x_0 }{2\sqrt{\gamma^2-\omega_0^2}}\right|_{0\lt\gamma\lt\omega_0}
\;\ldots\;\href{https://shikitenkai.blogspot.com/2021/04/c1-c2.html}{
C_{1,2} =\frac{x_0 }{2}\pm\frac{v_0 +\gamma x_0 }{2\sqrt{\gamma^2-\omega_0^2}}
}
\\&=&\frac{x_0 }{2}\pm\frac{v_0 +\gamma x_0 }{2\omega\sqrt{-1}}
\\&=&\frac{x_0 }{2}\pm\frac{v_0 +\gamma x_0 }{2\omega i}\frac{i}{i}
\\&=&\frac{x_0 }{2}\pm\frac{v_0 +\gamma x_0 }{2\omega\cdot(-1)}i
\\&=&\frac{x_0 }{2}\mp\frac{v_0 +\gamma x_0 }{2\omega}i\;\ldots\;ただし\omega\ne0
\end{eqnarray}$$
$$\begin{eqnarray}
x(t)&=&C_1 e^{\lambda_1 t}+C_2 e^{\lambda_2 t}
\\&=&C_1 e^{\left(-\gamma+\omega i\right) t}+C_2 e^{\left(-\gamma-\omega i\right) t}
\\&=&C_1 e^{-\gamma t}e^{\omega i t}+C_2 e^{-\gamma t}e^{-\omega i t}
\\&=&e^{-\gamma t}\left\{C_1 e^{\omega i t}+C_2 e^{-\omega i t}\right\}
\\\left\{C_1 e^{\omega i t}+C_2 e^{-\omega i t}\right\}&=&
\left\{\frac{x_0 }{2}-\frac{v_0 +\gamma x_0 }{2\omega}i\right\}e^{\omega i t}
+\left\{\frac{x_0 }{2}+\frac{v_0 +\gamma x_0 }{2\omega}i\right\}e^{-\omega i t}
\\&=&\left\{\frac{x_0 }{2}-\frac{v_0 +\gamma x_0 }{2\omega}i\right\}
\left\{ \cos{\left(\omega t\right)}+i\sin{\left(\omega t\right)}\right\}
\\&&+\left\{\frac{x_0 }{2}+\frac{v_0 +\gamma x_0 }{2\omega}i\right\}
\left\{ \cos{\left(-\omega t\right)}+i\sin{\left(-\omega t\right)}\right\}
\;\ldots\;\href{https://shikitenkai.blogspot.com/2021/04/eix.html}{e^{ix}= \cos{\left(x\right)}+i \sin{\left(x\right)}}
\\&=&\left\{\frac{x_0 }{2}-\frac{v_0 +\gamma x_0 }{2\omega}i\right\}
\left\{ \cos{\left(\omega t\right)}+i\sin{\left(\omega t\right)}\right\}
\\&&+\left\{\frac{x_0 }{2}+\frac{v_0 +\gamma x_0 }{2\omega}i\right\}
\left\{ \cos{\left(\omega t\right)}-i\sin{\left(\omega t\right)}\right\}
\\&&\;\ldots\;\cos{\left(-\theta\right)}=\cos{\left(\theta\right)},\;\sin{\left(-\theta\right)}=-\sin{\left(\theta\right)}
\\&=&\left\{\frac{x_0 }{2}-\frac{v_0 +\gamma x_0 }{2\omega}i\right\}\cos{\left(\omega t\right)}
+i\left\{\frac{x_0 }{2}-\frac{v_0 +\gamma x_0 }{2\omega}i\right\}\sin{\left(\omega t\right)}
\\&&+\left\{\frac{x_0 }{2}+\frac{v_0 +\gamma x_0 }{2\omega}i\right\}\cos{\left(\omega t\right)}
-i\left\{\frac{x_0 }{2}+\frac{v_0 +\gamma x_0 }{2\omega}i\right\}\sin{\left(\omega t\right)}
\\&=&\left\{\frac{x_0 }{2}-\frac{v_0 +\gamma x_0 }{2\omega}i\right\}\cos{\left(\omega t\right)}
+\left\{\frac{x_0 }{2}i+\frac{v_0 +\gamma x_0 }{2\omega}\right\}\sin{\left(\omega t\right)}
\\&&+\left\{\frac{x_0 }{2}+\frac{v_0 +\gamma x_0 }{2\omega}i\right\}\cos{\left(\omega t\right)}
-\left\{\frac{x_0 }{2}i-\frac{v_0 +\gamma x_0 }{2\omega}\right\}\sin{\left(\omega t\right)}
\\&&\;\ldots\;i\cdot i=-1
\\&=&\left\{\frac{x_0 }{2}\color{red}{-\frac{v_0 +\gamma x_0 }{2\omega}i}\color{black}{+\frac{x_0 }{2}}\color{red}{+\frac{v_0 +\gamma x_0 }{2\omega}i}\right\}\cos{\left(\omega t\right)}
\\&&+\left\{\color{blue}{\frac{x_0 }{2}i}\color{black}{+\frac{v_0 +\gamma x_0 }{2\omega}}\color{blue}{-\frac{x_0 }{2}i}\color{black}{+\frac{v_0 +\gamma x_0 }{2\omega}}\right\}\sin{\left(\omega t\right)}
\\&=&\left\{\frac{x_0 }{2}+\frac{x_0 }{2}\right\}\cos{\left(\omega t\right)}+\left\{\frac{v_0 +\gamma x_0 }{2\omega}+\frac{v_0 +\gamma x_0 }{2\omega}\right\}\sin{\left(\omega t\right)}
\\&=&x_0 \cos{\left(\omega t\right)}+\frac{v_0 +\gamma x_0 }{\omega}\sin{\left(\omega t\right)}
\end{eqnarray}$$
$$\begin{eqnarray}
x(t)&=&e^{-\gamma t}\left\{C_1 e^{\omega i t}+C_2 e^{-\omega i t}\right\}
\\&=&e^{-\gamma t}\left\{
x_0 \cos{\left(\omega t\right)}+\frac{v_0 +\gamma x_0 }{\omega}\sin{\left(\omega t\right)}
\right\}
\\&=&
\color{red}{
x_0 e^{-\gamma t}\left\{
\cos{\left(\omega t\right)}+\frac{\gamma}{\omega}\sin{\left(\omega t\right)}
\right\}
}
\color{blue}{
+v_0e^{-\gamma t}\left\{
\frac{1}{\omega}\sin{\left(\omega t\right)}
\right\}
}\color{black}{}
\;\ldots\;\color{red}{初期位置による減衰振動}\color{black}{},\;\color{blue}{初期速度による減衰振動}
\\&=&
x_0 e^{-\gamma t}\left\{
\cos{\left(\omega t\right)}+\frac{\zeta}{\sqrt{\zeta^2-1}}\sin{\left(\omega t\right)}
\right\}
+v_0e^{-\gamma t}\left\{
\frac{1}{\omega}\sin{\left(\omega t\right)}
\right\}
\\&&\;\ldots\;\frac{\gamma}{\omega}
=\frac{\gamma}{\sqrt{\left|\gamma^2-\omega_0^2\right|}}
=\frac{\gamma}{\sqrt{\frac{\omega_0^2}{\omega_0^2}\left|\gamma^2-\omega_0^2\right|}}
=\frac{\gamma}{\sqrt{\omega_0^2\left|\frac{\gamma^2}{\omega_0^2}-\frac{\omega_0^2}{\omega_0^2}\right|}}
=\frac{\gamma}{\omega_0\sqrt{\left|\zeta^2-1\right|}}
=\frac{\zeta}{\sqrt{\left|\zeta^2-1\right|}}
\\&&\;\ldots\;\omega=\sqrt{\left|\gamma^2-\omega_0^2\right|},\;\zeta=\frac{\gamma}{\omega_0}
\end{eqnarray}$$
0 件のコメント:
コメントを投稿