バネマスダンパー系
\(\gamma=0\)
$$\begin{eqnarray}
\lambda_{1,2}&=&\left.-\gamma\pm\sqrt{\gamma^2-\omega_0^2}\right|_{\gamma=0}
\;\ldots\;\href{https://shikitenkai.blogspot.com/2021/04/12.html}{\lambda_{1,2}=-\gamma\pm\sqrt{\gamma^2-\omega_0^2}}
\\&=&-0\pm\sqrt{0^2-\omega_0^2}
\\&=&\pm\sqrt{-\omega_0^2}
\\&=&\pm\omega_0\sqrt{-1}
\\&=&\pm\omega_0i
\end{eqnarray}$$
$$\begin{eqnarray}
C_{1,2} &=&\left.\frac{x_0 }{2}\pm\frac{v_0 +\gamma x_0 }{2\sqrt{\gamma^2-\omega_0^2}}\right|_{\gamma=0}
\;\ldots\;\href{https://shikitenkai.blogspot.com/2021/04/c1-c2.html}{
C_{1,2} =\frac{x_0 }{2}\pm\frac{v_0 +\gamma x_0 }{2\sqrt{\gamma^2-\omega_0^2}}
}
\\&=&\frac{x_0 }{2}\pm\frac{v_0 +0 x_0 }{2\sqrt{0^2-\omega_0^2}}
\\&=&\frac{x_0 }{2}\pm\frac{v_0 }{2\omega_0\sqrt{-1}}
\\&=&\frac{x_0 }{2}\pm\frac{v_0 }{2\omega_0i}\frac{i}{i}
\\&=&\frac{x_0 }{2}\pm\frac{v_0 }{2\omega_0\cdot(-1)}i
\\&=&\frac{x_0 }{2}\mp\frac{v_0 }{2\omega_0}i\;\ldots\;ただし\omega_0\ne0
\end{eqnarray}$$
$$\begin{eqnarray}
x(t)&=&C_1 e^{\lambda_1 t}+C_2 e^{\lambda_2 t}
\\&=&\left\{\frac{x_0 }{2}-\frac{v_0 }{2\omega_0}i\right\}e^{\omega_0i t}
+\left\{\frac{x_0 }{2}+\frac{v_0 }{2\omega_0}i\right\}e^{-\omega_0i t}
\\&=&\left\{\frac{x_0 }{2}-\frac{v_0 }{2\omega_0}i\right\}
\left\{ \cos{\left(\omega_0 t\right)}+i\sin{\left(\omega_0 t\right)}\right\}
\\&&+\left\{\frac{x_0 }{2}+\frac{v_0 }{2\omega_0}i\right\}
\left\{ \cos{\left(-\omega_0 t\right)}+i\sin{\left(-\omega_0 t\right)}\right\}
\;\ldots\;\href{https://shikitenkai.blogspot.com/2021/04/eix.html}{e^{ix}= \cos{\left(x\right)}+i \sin{\left(x\right)}}
\\&=&\left\{\frac{x_0 }{2}-\frac{v_0 }{2\omega_0}i\right\}
\left\{ \cos{\left(\omega_0 t\right)}+i\sin{\left(\omega_0 t\right)}\right\}
\\&&+\left\{\frac{x_0 }{2}+\frac{v_0 }{2\omega_0}i\right\}
\left\{ \cos{\left(\omega_0 t\right)}-i\sin{\left(\omega_0 t\right)}\right\}
\\&&\;\ldots\;\cos{\left(-\theta\right)}=\cos{\left(\theta\right)},\;\sin{\left(-\theta\right)}=-\sin{\left(\theta\right)}
\\&=&\left\{\frac{x_0 }{2}-\frac{v_0 }{2\omega_0}i\right\}\cos{\left(\omega_0 t\right)}
+i \left\{\frac{x_0 }{2}-\frac{v_0 }{2\omega_0}i\right\} \sin{\left(\omega_0 t\right)}
\\&&+\left\{\frac{x_0 }{2}+\frac{v_0 }{2\omega_0}i\right\} \cos{\left(\omega_0 t\right)}
-i \left\{\frac{x_0 }{2}+\frac{v_0 }{2\omega_0}i\right\}\sin{\left(\omega_0 t\right)}
\\&=&\left\{\frac{x_0 }{2}-\frac{v_0 }{2\omega_0}i\right\}\cos{\left(\omega_0 t\right)}
+\left\{\frac{x_0 }{2}i+\frac{v_0 }{2\omega_0}\right\} \sin{\left(\omega_0 t\right)}
\\&&+\left\{\frac{x_0 }{2}+\frac{v_0 }{2\omega_0}i\right\} \cos{\left(\omega_0 t\right)}
-\left\{\frac{x_0 }{2}i-\frac{v_0 }{2\omega_0}\right\} \sin{\left(\omega_0 t\right)}
\\&&\;\ldots\;i\cdot i=-1
\\&=&\left\{\frac{x_0 }{2}\color{red}{ -\frac{v_0 }{2\omega_0}i }\color{black}{ +\frac{x_0 }{2} }\color{red}{
+\frac{v_0 }{2\omega_0}i}\right\} \cos{\left(\omega_0 t\right)}
\\&&+\left\{\color{blue}{\frac{x_0 }{2}i}\color{black}{+\frac{v_0 }{2\omega_0}}\color{blue}{-\frac{x_0 }{2}i}\color{black}{+\frac{v_0 }{2\omega_0}}\right\}
\sin{\left(\omega_0 t\right)}
\\&=&\left\{\frac{x_0 }{2}+\frac{x_0 }{2}\right\}\cos{\left(\omega t\right)}+\left\{\frac{v_0 }{2\omega_0}+\frac{v_0 }{2\omega_0}\right\}\sin{\left(\omega t\right)}
\\&=&x_0 \cos{\left(\omega_0 t\right)}+\frac{v_0 }{\omega_0} \sin{\left(\omega_0 t\right)}
\\&=&\color{red}{x_0 \cos{\left(\omega_0 t\right)}}\color{blue}{+v_0 \frac{1}{\omega_0} \sin{\left(\omega_0 t\right)}}\color{black}{}
\;\ldots\;\color{red}{初期位置による単振動}\color{black}{},\;\color{blue}{初期速度による単振動}
\end{eqnarray}$$
0 件のコメント:
コメントを投稿