ラプラス変換
$$\begin{eqnarray}
\mathfrak{L}\left[ {f\left( t \right)} \right]
&=&\int_0^\infty {f\left( t \right){e^{–st}}}\mathrm{d}t
\end{eqnarray}$$
二階微分のラプラス変換
$$\begin{eqnarray}
f\left(t\right)&=&\frac{\mathrm{d^2}g\left(t\right)}{\mathrm{d^2}t}
\\\mathfrak{L}\left[ {f\left( t \right)} \right]
&=&\int_0^\infty {f\left( t \right){e^{–st}}}\mathrm{d}t
\\&=&\int_0^\infty {\frac{\mathrm{d^2}g\left(t\right)}{\mathrm{d^2}t}{e^{–st}}}\mathrm{d}t
\\&=&\left[\frac{\mathrm{d}g\left(t\right)}{\mathrm{d}t}{e^{–st}}\right]_0^\infty-\int_0^\infty
{\frac{\mathrm{d}g\left(t\right)}{\mathrm{d}t}{\left(-s\right)e^{–st}}}\mathrm{d}t
\\&&\;\ldots\;\href{https://shikitenkai.blogspot.com/2020/02/blog-post_7.html}{\int_a^b{f'\left( t \right) g\left( t \right) }\mathrm{d}t=\left[f\left( t \right) g\left( t
\right)\right]_a^b-\int_a^b{f\left( t \right) g'\left( t \right) }\mathrm{d}t\;\;(f':fの微分,\;g':gの部分)}
\\&=&\left[\frac{\mathrm{d}g\left(\infty\right)}{\mathrm{d}t}{e^{–s\infty}}
-\left\{\left.\frac{\mathrm{d}g\left(t\right)}{\mathrm{d}t}\right|_{t=0}\right\}{e^{–s0}}\right]
-\left(-s\right)\int_0^\infty{\frac{\mathrm{d}g\left(t\right)}{\mathrm{d}t}{e^{–st}}}\mathrm{d}t
\\&=&\left[0-g^{\prime}\left(0\right)\right]
+s\int_0^\infty{\frac{\mathrm{d}g\left(t\right)}{\mathrm{d}t}{e^{–st}}}\mathrm{d}t
\\&&\;\ldots\;\left.\frac{\mathrm{d}g\left(t\right)}{\mathrm{d}t}\right|_{t=0}=g^{\prime}\left(0\right)
\\&=&s\int_0^\infty{\frac{\mathrm{d}g\left(t\right)}{\mathrm{d}t}{e^{–st}}}\mathrm{d}t
-g^{\prime}\left(0\right)
\\&=&s\left\{s\mathfrak{L}\left[g(t)\right]- g\left(0\right)\right\}-g^{\prime}\left(0\right)
\\&&\;\ldots\;\href{https://shikitenkai.blogspot.com/2021/04/fracmathrmdfmathrmdt.html}{\int_0^\infty{\frac{\mathrm{d}g\left(t\right)}{\mathrm{d}t}{e^{–st}}}\mathrm{d}t
=\mathfrak{L}\left[\frac{\mathrm{d}g\left(t\right)}{\mathrm{d}t}\right]
=s\mathfrak{L}\left[g(t)\right]- g\left(0\right)}
\\&=&s^2\mathfrak{L}\left[ {g\left( t \right)} \right] - sg\left(0\right)
-g^{\prime}\left(0\right)
\end{eqnarray}$$
0 件のコメント:
コメントを投稿