間違いしかありません.コメントにてご指摘いただければ幸いです(気が付いた点を特に断りなく頻繁に書き直していますのでご注意ください).

(sin(x)+3)/(cos(x)+2)の最大値最小値 (一階微分を用いて極値として解く)

問い

(問いを知った動画) $$ \begin{eqnarray} \frac{\sin{\left(\theta\right)}+3}{\cos{\left(\theta\right)}+2}の\frac{-\pi}{2}\leq\theta\leq\frac{\pi}{2}における最大値最小値を求めよ \end{eqnarray} $$

一階微分の解で求める

(別解:直線の傾きとして解く)

極値を得るため一階微分を求める

$$ \begin{eqnarray} f(\theta)&=&\frac{\sin{\left(\theta\right)}+3}{\cos{\left(\theta\right)}+2} \\f^{\prime}(\theta)&=&\left\{\left(\sin{\left(\theta\right)}+3\right)\left(\cos{\left(\theta\right)}+2\right)^{-1}\right\}^{\prime} \\&=&\left(\sin{\left(\theta\right)}+3\right)\left\{\left(\cos{\left(\theta\right)}+2\right)^{-1}\right\}^{\prime} +\left(\sin{\left(\theta\right)}+3\right)^{\prime}\left(\cos{\left(\theta\right)}+2\right)^{-1} \;\cdots\;\href{https://shikitenkai.blogspot.com/2020/02/blog-post.html}{(fg)^{\prime}=fg^{\prime}+f^{\prime}g} \\&=&\left(\sin{\left(\theta\right)}+3\right)\left\{(-1)\left(\cos{\left(\theta\right)}+2\right)^{-2}\left(\cos{\left(\theta\right)}+2\right)^{\prime}\right\} +\cos{\left(\theta\right)}\left(\cos{\left(\theta\right)}+2\right)^{-1} \\&=&\left(\sin{\left(\theta\right)}+3\right)\left\{(-1)\left(\cos{\left(\theta\right)}+2\right)^{-2}\left(-\sin{\left(\theta\right)}\right)\right\} +\cos{\left(\theta\right)}\left(\cos{\left(\theta\right)}+2\right)^{-1} \\&=&\left(\sin{\left(\theta\right)}+3\right)\frac{\sin{\left(\theta\right)}}{\left(\cos{\left(\theta\right)}+2\right)^{2}} +\frac{\cos{\left(\theta\right)}}{\cos{\left(\theta\right)}+2} \\&=&\frac{\left(\sin{\left(\theta\right)}+3\right)\sin{\left(\theta\right)}}{\left(\cos{\left(\theta\right)}+2\right)^{2}} +\frac{\cos{\left(\theta\right)}}{\cos{\left(\theta\right)}+2}\frac{\cos{\left(\theta\right)+2}}{\cos{\left(\theta\right)}+2} \\&=&\frac{\left(\sin{\left(\theta\right)}+3\right)\sin{\left(\theta\right)}}{\left(\cos{\left(\theta\right)}+2\right)^{2}} +\frac{\cos{\left(\theta\right)}\left(\cos{\left(\theta\right)}+2\right)}{\left(\cos{\left(\theta\right)}+2\right)^2} \\&=&\frac{\left(\sin{\left(\theta\right)}+3\right)\sin{\left(\theta\right)}+\cos{\left(\theta\right)}\left(\cos{\left(\theta\right)}+2\right)}{\left(\cos{\left(\theta\right)}+2\right)^{2}} \\&=&\frac{\sin{\left(\theta\right)}^2+3\sin{\left(\theta\right)}+\cos{\left(\theta\right)}^2+2\cos{\left(\theta\right)}}{\left(\cos{\left(\theta\right)}+2\right)^{2}} \\&=&\frac{1+3\sin{\left(\theta\right)}+2\cos{\left(\theta\right)}}{\left(\cos{\left(\theta\right)}+2\right)^{2}} \;\cdots\;\sin{\left(\theta\right)}^2+\cos{\left(\theta\right)}^2=1 \\&&\;\cdots\;\cos{\left(\theta\right)}は\pm1の範囲なので分母が0や\inftyの心配はない \end{eqnarray} $$

極値を得るため一階微分が0となる解を求める

$$ \begin{eqnarray} \\f^{\prime}(\theta)&=&0 \;\cdots\;fの極大極小値となる\thetaを求める \\1+3\sin{\left(\theta\right)}+2\cos{\left(\theta\right)}&=&0 \;\cdots\;f^{\prime}の分子が0になればf^{\prime}自体も0であるので分子のみ \\1+\sqrt{3^2+2^2}\sin{\left(\theta + \tan^{-1}{\left(\frac{2}{3}\right)}\right)}&=&0 \;\cdots\;三角凾数の合成\;a\sin{\left(\theta\right)}+b\cos{\left(\theta\right)}=\sqrt{a^2+b^2}\sin{\left(\theta + \tan^{-1}{\left(\frac{b}{a}\right)}\right)} \\1+\sqrt{13}\sin{\left(\theta + \tan^{-1}{\left(\frac{2}{3}\right)}\right)}&=&0 \\\sqrt{13}\sin{\left(\theta + \tan^{-1}{\left(\frac{2}{3}\right)}\right)}&=&-1 \\\sin{\left(\theta + \tan^{-1}{\left(\frac{2}{3}\right)}\right)}&=&\frac{-1}{\sqrt{13}} \end{eqnarray} $$

\(\sin\)の逆凾数

$$ \begin{eqnarray} \\\theta + \tan^{-1}{\left(\frac{2}{3}\right)}&=&\sin^{-1}\left(\frac{-1}{\sqrt{13}}\right),-\pi-\sin^{-1}\left(\frac{-1}{\sqrt{13}}\right) \\&&\;\cdots\;三角凾数は単射ではないので,逆凾数を得るために制限が加えられる \\&&\;\cdots\;y=\sin^{-1}\left(x\right)とすると定義域-1\leq x \leq 1,値域\frac{\pi}{2}\leq y\leq-\frac{-\pi}{2} \\&&\;\cdots\;制限がなければ一つのy軸の値(\sin{\left(x\right)})に対してy軸からx軸方向の正負に等距離となる単位円上の2つの点に対する角度(\theta_1,\theta_2)であり2つ値を持つ \\&&\;\cdots\;\frac{-1}{\sqrt{13}}は負なので制限のない状態では単位円第三,四象限上の点に対する角度(\theta_1,\theta_2)である \\&&\;\cdots\;制限を考慮すると\sin^{-1}\left(\frac{-1}{\sqrt{13}}\right)は単位円第四象限上の点への角度(\theta_1)の値のみを表す \\&&\;\cdots\;このため第三象限の点への角度(\theta_2)の値は-\piから\sin^{-1}\left(\frac{-1}{\sqrt{13}}\right)の値を引いたものとして得るようにする \end{eqnarray} $$

\(\sin^{-1}\left(\frac{-1}{\sqrt{13}}\right)\)のケース

$$ \begin{eqnarray} \theta_1 + \tan^{-1}{\left(\frac{2}{3}\right)}&=&\sin^{-1}\left(\frac{-1}{\sqrt{13}}\right) \\\theta_1 &=&\sin^{-1}\left(\frac{-1}{\sqrt{13}}\right)-\tan^{-1}{\left(\frac{2}{3}\right)} \\ &=&\tan^{-1}\left( \frac{\frac{-1}{\sqrt{13}}}{\sqrt{1-\left(\frac{-1}{\sqrt{13}}\right)^2}} \right)-\tan^{-1}{\left(\frac{2}{3}\right)} \\ &=&\tan^{-1}\left( \frac{\frac{-1}{\sqrt{13}}}{\sqrt{1-\frac{1}{13}}} \right)-\tan^{-1}{\left(\frac{2}{3}\right)} \\ &=&\tan^{-1}\left( \frac{\frac{-1}{\sqrt{13}}}{\sqrt{\frac{13}{13}-\frac{1}{13}}} \right)-\tan^{-1}{\left(\frac{2}{3}\right)} \\ &=&\tan^{-1}\left( \frac{\frac{-1}{\sqrt{13}}}{\sqrt{\frac{12}{13}}} \right)-\tan^{-1}{\left(\frac{2}{3}\right)} \\ &=&\tan^{-1}\left( \frac{\frac{-1}{\sqrt{13}}}{\frac{\sqrt{12}}{\sqrt{13}}}\frac{\sqrt{13}}{\sqrt{13}} \right)-\tan^{-1}{\left(\frac{2}{3}\right)} \\ &=&\tan^{-1}\left( \frac{-1}{\sqrt{12}} \right)-\tan^{-1}{\left(\frac{2}{3}\right)} \\ &=&\tan^{-1}\left( \frac{-1}{2\sqrt{3}} \right)-\tan^{-1}{\left(\frac{2}{3}\right)} \\ &=&\tan^{-1}\left(\frac{\frac{-1}{2\sqrt{3}}-\frac{2}{3}}{1+\frac{-1}{2\sqrt{3}}\frac{2}{3}}\right) \;\cdots\;\tan^{-1}{\left(u\right)}\pm\tan^{-1}{\left(v\right)}=\tan^{-1}{\left(\frac{u\pm v}{1\mp uv}\right)} \\ &=&\tan^{-1}\left(\frac{\frac{-3-4\sqrt{3}}{6\sqrt{3}}}{1+\frac{-2}{6\sqrt{3}}}\right) \;\cdots\;\frac{-1}{2\sqrt{3}}\frac{2}{3}=\frac{-2}{6\sqrt{3}}=-0.192… \\ &=&\tan^{-1}\left(\frac{\frac{-3-4\sqrt{3}}{6\sqrt{3}}}{\frac{-2+6\sqrt{3}}{6\sqrt{3}}}\frac{6\sqrt{3}}{6\sqrt{3}}\right) \\ &=&\tan^{-1}\left(\frac{-3-4\sqrt{3}}{-2+6\sqrt{3}}\frac{-2-6\sqrt{3}}{-2+6\sqrt{3}}\right) \\ &=&\tan^{-1}\left(\frac{6+18\sqrt{3}+8\sqrt{3}+72}{4-108}\right) \\ &=&\tan^{-1}\left(\frac{78+26\sqrt{3}}{-104}\right) \\ &=&\tan^{-1}\left(\frac{-3-\sqrt{3}}{4}\right) \\\tan\left(\theta_1\right)&=&\frac{-3-\sqrt{3}}{4}\lt0 \\&&\;\cdots\;\tan\left(\theta_1\right)が負の値ということは\theta_1は単位円第二,四象限上の点の角度となる \\&&\;\cdots\;\tan^{-1}の制限から\theta_1は単位円第四象限上の点の角度の値である \\&&\;\cdots\;これは問いの\thetaの条件の範囲になっている. \end{eqnarray} $$

\(-\pi-\sin^{-1}\left(\frac{-1}{\sqrt{13}}\right)\)のケース

$$ \begin{eqnarray} \theta_2 + \tan^{-1}{\left(\frac{2}{3}\right)}&=&-\pi-\sin^{-1}\left(\frac{-1}{\sqrt{13}}\right) \\\theta_2 &=&-\pi-\sin^{-1}\left(\frac{-1}{\sqrt{13}}\right)-\tan^{-1}{\left(\frac{2}{3}\right)} \\ &=&-\pi-\tan^{-1}\left( \frac{\frac{-1}{\sqrt{13}}}{\sqrt{1-\left(\frac{-1}{\sqrt{13}}\right)^2}} \right)-\tan^{-1}{\left(\frac{2}{3}\right)} \\ &=&-\pi-\tan^{-1}\left( \frac{\frac{-1}{\sqrt{13}}}{\sqrt{1-\frac{1}{13}}} \right)-\tan^{-1}{\left(\frac{2}{3}\right)} \\ &=&-\pi-\tan^{-1}\left( \frac{\frac{-1}{\sqrt{13}}}{\sqrt{\frac{13}{13}-\frac{1}{13}}} \right)-\tan^{-1}{\left(\frac{2}{3}\right)} \\ &=&-\pi-\tan^{-1}\left( \frac{\frac{-1}{\sqrt{13}}}{\sqrt{\frac{12}{13}}} \right)-\tan^{-1}{\left(\frac{2}{3}\right)} \\ &=&-\pi-\tan^{-1}\left( \frac{\frac{-1}{\sqrt{13}}}{\frac{\sqrt{12}}{\sqrt{13}}}\frac{\sqrt{13}}{\sqrt{13}} \right)-\tan^{-1}{\left(\frac{2}{3}\right)} \\ &=&-\pi-\tan^{-1}\left( \frac{-1}{\sqrt{12}} \right)-\tan^{-1}{\left(\frac{2}{3}\right)} \\ &=&-\pi-\tan^{-1}\left( \frac{-1}{2\sqrt{3}} \right)-\tan^{-1}{\left(\frac{2}{3}\right)} \\ &=&-\pi-\left(\tan^{-1}\left( \frac{-1}{2\sqrt{3}} \right)+\tan^{-1}{\left(\frac{2}{3}\right)}\right) \\ &=&-\pi-\tan^{-1}\left(\frac{\frac{-1}{2\sqrt{3}}+\frac{2}{3}}{1-\frac{-1}{2\sqrt{3}}\frac{2}{3}}\right) \;\cdots\;\tan^{-1}{\left(u\right)}\pm\tan^{-1}{\left(v\right)}=\tan^{-1}{\left(\frac{u\pm v}{1\mp uv}\right)} \\ &=&-\pi-\tan^{-1}\left(\frac{\frac{-3+4\sqrt{3}}{6\sqrt{3}}}{1+\frac{2}{6\sqrt{3}}}\right) \;\cdots\;\frac{1}{2\sqrt{3}}\frac{2}{3}=\frac{2}{6\sqrt{3}}=0.192… \\&=&-\pi-\tan^{-1}\left(\frac{\frac{-3+4\sqrt{3}}{6\sqrt{3}}}{\frac{2+6\sqrt{3}}{6\sqrt{3}}}\right) \\&=&-\pi-\tan^{-1}\left(\frac{\frac{-3+4\sqrt{3}}{6\sqrt{3}}}{\frac{2+6\sqrt{3}}{6\sqrt{3}}}\frac{6\sqrt{3}}{6\sqrt{3}}\right) \\&=&-\pi-\tan^{-1}\left(\frac{-3+4\sqrt{3}}{6\sqrt{3}+2}\frac{2-6\sqrt{3}}{2-6\sqrt{3}}\right) \\&=&-\pi-\tan^{-1}\left(\frac{-6+18\sqrt{3}+8\sqrt{3}-72}{4-108}\right) \\&=&-\pi-\tan^{-1}\left(\frac{-78+26\sqrt{3}}{-104}\right) \\&=&-\pi-\tan^{-1}\left(\frac{3-\sqrt{3}}{4}\right) \\&=&-\pi+\tan^{-1}\left(\frac{-3+\sqrt{3}}{4}\right) \;\cdots\;-\tan^{-1}{\left(x\right)}=\tan^{-1}{\left(-x\right)} \\\theta_2+\pi&=&\tan^{-1}\left(\frac{-3+\sqrt{3}}{4}\right) \\\tan\left(\theta_2+\pi\right)&=&\frac{-3+\sqrt{3}}{4}\lt0 \\&&\;\cdots\;\tan\left(\theta_2+\pi\right)が負の値ということは\theta_2+\piは単位円第二,四象限上の点の角度となる \\&&\;\cdots\;\tan^{-1}の制限から\theta_2+\piは単位円第四象限上の点の角度の値である \\&&\;\cdots\;\theta_2は-\piに第四象限の点の角度の値(負の値)を加えたものであり単位円第二象限上の点の角度の値となる \\&&\;\cdots\;これは問いの\thetaの条件の範囲になっていない \end{eqnarray} $$

\(\tan\)の値から\(\sin,\cos\)の値を求める

$$ \begin{eqnarray} \tan\left(\theta\right)&=&\frac{\sin\left(\theta\right)}{\cos\left(\theta\right)} \\&=&\frac{\sin\left(\theta\right)}{\sqrt{1-\sin^2\left(\theta\right)}} \;\cdots\;\cos^2\left(\theta\right)+\sin^2\left(\theta\right)=1,\cos\left(\theta\right)=\sqrt{1-\sin^2\left(\theta\right)} \\\tan\left(\theta\right)\sqrt{1-\sin^2\left(\theta\right)}&=&\sin\left(\theta\right) \\\tan^2\left(\theta\right)\left(1-\sin^2\left(\theta\right)\right)&=&\sin^2\left(\theta\right) \\\tan^2\left(\theta\right)-\tan^2\left(\theta\right)\sin^2\left(\theta\right)&=&\sin^2\left(\theta\right) \\\tan^2\left(\theta\right)&=&\sin^2\left(\theta\right)+\tan^2\left(\theta\right)\sin^2\left(\theta\right) \\\tan^2\left(\theta\right)&=&\sin^2\left(\theta\right)\left(1+\tan^2\left(\theta\right)\right) \\\frac{\tan^2\left(\theta\right)}{\left(1+\tan^2\left(\theta\right)\right)}&=&\sin^2\left(\theta\right) \\\sin\left(\theta\right)&=&\frac{\tan\left(\theta\right)}{\sqrt{1+\tan^2\left(\theta\right)}} \\\cos\left(\theta\right)&=&\frac{\sin\left(\theta\right)}{\tan\left(\theta\right)} \\&=&\frac{\frac{\tan\left(\theta\right)}{\sqrt{1+\tan^2\left(\theta\right)}}}{\tan\left(\theta\right)} \\&=&\frac{\tan\left(\theta\right)}{\tan\left(\theta\right)}\frac{1}{\sqrt{1+\tan^2\left(\theta\right)}} \\&=&\frac{1}{\sqrt{1+\tan^2\left(\theta\right)}} \end{eqnarray} $$

\(\sin,\cos\)の値 / \(\theta_1\)のケース

$$ \begin{eqnarray} \\\sin\left(\theta_1\right)&=&\frac{\tan\left(\theta_1\right)}{\sqrt{1+\tan^2\left(\theta_1\right)}} \\&=&\frac{\frac{-3-\sqrt{3}}{4}}{\sqrt{1+\left(\frac{-3-\sqrt{3}}{4}\right)^2}} \\&=&\frac{\frac{-3-\sqrt{3}}{4}}{\sqrt{1+\frac{9+6\sqrt{3}+3}{16}}} \\&=&\frac{\frac{-3-\sqrt{3}}{4}}{\sqrt{\frac{16+12+6\sqrt{3}}{16}}} \\&=&\frac{\frac{-3-\sqrt{3}}{4}}{\sqrt{\frac{28+6\sqrt{3}}{16}}} \\&=&\frac{\frac{-3-\sqrt{3}}{4}}{\frac{1}{4}\sqrt{28+6\sqrt{3}}} \\&=&\frac{-3-\sqrt{3}}{\sqrt{28+6\sqrt{3}}} \\&=&\frac{-3-\sqrt{3}}{\sqrt{27+6\sqrt{3}+1}} \\&=&\frac{-3-\sqrt{3}}{\sqrt{\left(3\sqrt{3}\right)^2+6\sqrt{3}+1}} \\&=&\frac{-3-\sqrt{3}}{\sqrt{\left(1+3\sqrt{3}\right)^2}} \\&=&\frac{-3-\sqrt{3}}{1+3\sqrt{3}} \\&=&\frac{-3-\sqrt{3}}{1+3\sqrt{3}}\frac{1-3\sqrt{3}}{1-3\sqrt{3}} \\&=&\frac{-3+9\sqrt{3}-\sqrt{3}+9}{1-27} \\&=&\frac{6+8\sqrt{3}}{26} \\&=&\frac{3+2\sqrt{3}}{13} \\\cos\left(\theta_1\right)&=&\frac{1}{\sqrt{1+\tan^2\left(\theta_1\right)}} \\&=&\frac{1}{\sqrt{1+\left(\frac{-3-\sqrt{3}}{4}\right)^2}} \\&=&\frac{1}{\sqrt{1+\frac{3+6\sqrt{3}+9}{16}}} \\&=&\frac{1}{\sqrt{\frac{16+3+6\sqrt{3}+9}{16}}} \\&=&\frac{1}{\sqrt{\frac{28+6\sqrt{3}}{16}}} \\&=&\frac{1}{\frac{1}{4}\sqrt{28+6\sqrt{3}}} \\&=&\frac{4}{\sqrt{28+6\sqrt{3}}} \\&=&\frac{4}{\sqrt{27+6\sqrt{3}+1}} \\&=&\frac{4}{\sqrt{(3\sqrt{3})^2+6\sqrt{3}+1}} \\&=&\frac{4}{\sqrt{(1+3\sqrt{3})^2}} \\&=&\frac{4}{1+3\sqrt{3}} \\&=&\frac{4}{1+3\sqrt{3}}\frac{1-3\sqrt{3}}{1-3\sqrt{3}} \\&=&\frac{4\left(1-3\sqrt{3}\right)}{1-27} \\&=&\frac{4\left(1-3\sqrt{3}\right)}{-26} \\&=&\frac{2\left(-1+3\sqrt{3}\right)}{13} \\&=&\frac{-2+6\sqrt{3}}{13} \end{eqnarray} $$

\(\frac{\sin{\left(\theta_1\right)}+3}{\cos{\left(\theta_1\right)}+2}\)の値

$$ \begin{eqnarray} \frac{\sin{\left(\theta_1\right)}+3}{\cos{\left(\theta_1\right)}+2} &=&\frac{\frac{-3-4\sqrt{3}}{13}+3}{-2+\frac{6\sqrt{3}}{13}+2} \\&=&\frac{\frac{-3-4\sqrt{3}+39}{13}}{\frac{-2+6\sqrt{3}+26}{13}} \\&=&\frac{\frac{36-4\sqrt{3}+39}{13}}{\frac{24+6\sqrt{3}+26}{13}}\frac{13}{13} \\&=&\frac{36-4\sqrt{3}}{24+6\sqrt{3}} \\&=&\frac{4(9-\sqrt{3})}{6(4+\sqrt{3})} \\&=&\frac{4}{6}\frac{9-\sqrt{3}}{4+\sqrt{3}} \\&=&\frac{2}{3}\frac{9-\sqrt{3}}{4+\sqrt{3}}\frac{4-\sqrt{3}}{4-\sqrt{3}} \\&=&\frac{2}{3}\frac{36-9\sqrt{3}-4\sqrt{3}+3}{16-3} \\&=&\frac{2}{3}\frac{39-13\sqrt{3}}{-13} \\&=&\frac{2}{3}\left(3-\sqrt{3}\right) \end{eqnarray} $$

\(\sin,\cos\)の値 / \(\theta_2\)のケース

$$ \begin{eqnarray} \\\sin\left(\theta_2+\pi\right)&=&\frac{\tan\left(\theta_2+\pi\right)}{\sqrt{1+\tan^2\left(\theta_2+\pi\right)}} \\&=&\frac{\frac{-3+\sqrt{3}}{4}}{\sqrt{1+\left(\frac{-3+\sqrt{3}}{4}\right)^2}} \\&=&\frac{\frac{-3+\sqrt{3}}{4}}{\sqrt{1+\frac{9-6\sqrt{3}+3}{16}}} \\&=&\frac{\frac{-3+\sqrt{3}}{4}}{\sqrt{\frac{16+9-6\sqrt{3}+3}{16}}} \\&=&\frac{\frac{-3+\sqrt{3}}{4}}{\sqrt{\frac{28-6\sqrt{3}}{16}}} \\&=&\frac{\frac{-3+\sqrt{3}}{4}}{\frac{1}{4}\sqrt{28-6\sqrt{3}}}\frac{4}{4} \\&=&\frac{-3+\sqrt{3}}{\sqrt{28-6\sqrt{3}}} \\&=&\frac{-3+\sqrt{3}}{\sqrt{1-6\sqrt{3}+27}} \\&=&\frac{-3+\sqrt{3}}{\sqrt{1-6\sqrt{3}+\left(3\sqrt{3}\right)^2}} \\&=&\frac{-3+\sqrt{3}}{\sqrt{\left(1-3\sqrt{3}\right)^2}} \\&=&\frac{-3+\sqrt{3}}{\left|1-3\sqrt{3}\right|} \\&=&\frac{-3+\sqrt{3}}{-\left(1-3\sqrt{3}\right)} \;\cdots\;3\sqrt{3}\gt1より1-3\sqrt{3}\lt0,A\lt0の時\left|A\right|=-A \\&=&\frac{-3+\sqrt{3}}{-1+3\sqrt{3}} \\&=&\frac{-3+\sqrt{3}}{-1+3\sqrt{3}}\frac{-1-3\sqrt{3}}{-1-3\sqrt{3}} \\&=&\frac{3+9\sqrt{3}-\sqrt{3}-9}{1-27} \\&=&\frac{-6+8\sqrt{3}}{-26} \\&=&\frac{3-4\sqrt{3}}{13} \\\sin\left(\theta_2\right)&=&-\frac{3-4\sqrt{3}}{13} \;\cdots\;\sin\left(x+\pi\right)=-\sin\left(x\right)=\sin\left(-x\right) \\&=&\frac{-3+4\sqrt{3}}{13} \\\cos\left(\theta_2+\pi\right)&=&\frac{1}{\sqrt{1+\tan^2\left(\theta_2\right)}} \\&=&\frac{1}{\sqrt{1+\left(\frac{-3+\sqrt{3}}{4}\right)^2}} \\&=&\frac{1}{\sqrt{1+\frac{9-6\sqrt{3}+3}{16}}} \\&=&\frac{1}{\sqrt{\frac{16+9-6\sqrt{3}+3}{16}}} \\&=&\frac{1}{\sqrt{\frac{28-6\sqrt{3}}{16}}} \\&=&\frac{1}{\frac{1}{4}\sqrt{28-6\sqrt{3}}} \\&=&\frac{1}{\frac{1}{4}\sqrt{28-6\sqrt{3}}}\frac{4}{4} \\&=&\frac{4}{\sqrt{28-6\sqrt{3}}} \\&=&\frac{4}{\sqrt{1-6\sqrt{3}+27}} \\&=&\frac{4}{\sqrt{1-6\sqrt{3}+\left(3\sqrt{3}\right)^2}} \\&=&\frac{4}{\sqrt{\left(1-3\sqrt{3}\right)^2}} \\&=&\frac{4}{\left|1-3\sqrt{3}\right|} \\&=&\frac{4}{-\left(1-3\sqrt{3}\right)} \;\cdots\;3\sqrt{3}\gt1より1-3\sqrt{3}\lt0,A\lt0の時\left|A\right|=-A \\&=&\frac{4}{-1+3\sqrt{3}} \\&=&\frac{4}{-1+3\sqrt{3}}\frac{-1-3\sqrt{3}}{-1-3\sqrt{3}} \\&=&\frac{4\left(-1-3\sqrt{3}\right)}{1-27} \\&=&\frac{4\left(-1-3\sqrt{3}\right)}{-26} \\&=&\frac{-2\left(-1-3\sqrt{3}\right)}{13} \\&=&\frac{2+6\sqrt{3}}{13} \\\cos\left(\theta_2\right)&=&-\frac{2+6\sqrt{3}}{13} \\&=&\frac{-2-6\sqrt{3}}{13} \end{eqnarray} $$

\(\frac{\sin{\left(\theta_2\right)}+3}{\cos{\left(\theta_2\right)}+2}\)の値

$$ \begin{eqnarray} \frac{\sin{\left(\theta_2\right)}+3}{\cos{\left(\theta_2\right)}+2} &=&\frac{\frac{-3+4\sqrt{3}}{13}+3}{\frac{-2-6\sqrt{3}}{13}+2} \\&=&\frac{\frac{-3+4\sqrt{3}+39}{13}}{\frac{-2-6\sqrt{3}+26}{13}} \\&=&\frac{\frac{36+4\sqrt{3}}{13}}{\frac{24-6\sqrt{3}}{13}} \\&=&\frac{36+4\sqrt{3}}{24-6\sqrt{3}} \\&=&\frac{4}{6}\frac{9+\sqrt{3}}{4-\sqrt{3}} \\&=&\frac{2}{3}\frac{9+\sqrt{3}}{4-\sqrt{3}} \\&=&\frac{2}{3}\frac{9+\sqrt{3}}{4-\sqrt{3}}\frac{4+\sqrt{3}}{4+\sqrt{3}} \\&=&\frac{2}{3}\frac{36+9\sqrt{3}+4\sqrt{3}+3}{16-3} \\&=&\frac{2}{3}\frac{39+13\sqrt{3}}{13} \\&=&\frac{2}{3}\left(3+\sqrt{3}\right) \end{eqnarray} $$

\(\frac{\sin{\left(\theta_1,2\right)}+3}{\cos{\left(\theta_1,2\right)}+2}\)の比較

$$ \begin{eqnarray} \frac{\sin{\left(\theta_1\right)}+3}{\cos{\left(\theta_1\right)}+2}&=&\frac{2}{3}\left(3-\sqrt{3}\right) \\\frac{\sin{\left(\theta_2\right)}+3}{\cos{\left(\theta_2\right)}+2}&=&\frac{2}{3}\left(3+\sqrt{3}\right) \\より \\\frac{\sin{\left(\theta_1\right)}+3}{\cos{\left(\theta_1\right)}+2}\lt\frac{\sin{\left(\theta_2\right)}+3}{\cos{\left(\theta_2\right)}+2} \end{eqnarray} $$ よって\(\theta_1\)が最小値,\(\theta_2\)が最大値の角度となるが,\(\theta_2\)は範囲外のため,範囲内での最大を求める必要がある. $$ \begin{eqnarray} \theta=\frac{\pi}{2}の場合&:&\frac{\sin{\left(\frac{\pi}{2}\right)}+3}{\cos{\left(\frac{\pi}{2}\right)}+2} &=&\frac{1+3}{0+2}=\frac{4}{2}=2 \\\theta=\frac{-\pi}{2}の場合&:&\frac{\sin{\left(\frac{-\pi}{2}\right)}+3}{\cos{\left(\frac{-\pi}{2}\right)}+2} &=&\frac{-1+3}{0+2}=\frac{2}{2}=1 \end{eqnarray} $$ \(\theta=\frac{\pi}{2}\)の値の方が大きいのでこれが範囲内での最大値となる.

答え

以上より与式の最大値最小値はそれぞれ,最大値\(2\),最小値\(\frac{2}{3}\left(3-\sqrt{3}\right)\)となる.

(sin(x)+3)/(cos(x)+2)の最大値最小値 (直線の傾きとして解く)

問い

(問いを知った動画) $$ \begin{eqnarray} \frac{\sin{\left(\theta\right)}+3}{\cos{\left(\theta\right)}+2}の\frac{-\pi}{2}\leq\theta\leq\frac{\pi}{2}における最大値最小値 \end{eqnarray} $$

直線の傾きとして求める

(別解: 一階微分を用いて極値として解く)
問いを知った動画の通り解いてみる.

与式を直線の傾きとみて幾何の問題として解く

$$ \begin{eqnarray} k&=&\frac{\sin{\left(\theta\right)}+3}{\cos{\left(\theta\right)}+2} \\&=&\frac{\sin{\left(\theta\right)}-(-3)}{\cos{\left(\theta\right)}-(-2)} \\&&\;\cdots\;点(\cos{\left(\theta\right)},\sin{\left(\theta\right)})と点(-2,-3)を通る直線lの傾き \end{eqnarray} $$

直線の方程式

$$ \begin{eqnarray} \\y-(-3)&=&k(x-(-2)) \\0&=&kx-y+2k-3 \;\cdots\;ax+by+c=0の形での直線lの式 \end{eqnarray} $$ \(点(\cos{\left(\theta\right)},\sin{\left(\theta\right)})\)は原点を中心とした半径1の円(単位円)上の点を意味する.
よってこの直線\(l\)は,点(-2,-3)から半径1の円(単位円)への接線ということになる.
この接線は円の中心点(原点)からの距離が1となる直線である.

点と直線の距離

$$ \begin{eqnarray} \\d&=&\frac{\left|ap+bq+c\right|}{\sqrt{a^2+b^2}}\;\cdots\;\href{https://shikitenkai.blogspot.com/2020/06/blog-post_11.html}{直線ax+by+c=0と点(p,q)との距離dの式} \\1&=&\frac{\left|k\cdot0-1\cdot0+2k-3\right|}{\sqrt{k^2+(-1)^2}}\;\cdots\;ここでは(p,q)は原点なので(0,0) \\&=&\frac{\left|2k-3\right|}{\sqrt{k^2+1}} \\\sqrt{k^2+1}&=&\left|2k-3\right| \\k^2+1&=&(2k-3)^2 \\&=&4k^2-12k+9 \\0&=&3k^2-12k+8 \;\cdots\;単位円に円の外の点から接線を引くと2つの直線l_{1,2}が引けるため傾きも2つ得られる \end{eqnarray} $$

二次方程式の解(の公式)

$$ \begin{eqnarray} \\k_{l_{1,2}}&=&\frac{-(-12)\pm\sqrt{(-12)^2-4\cdot3\cdot8}}{2\cdot3} \;\cdots\;\href{https://shikitenkai.blogspot.com/2020/11/blog-post.html}{ax^2+bx+c=0においてx=\frac{-b\pm\sqrt{b^2-4ac}}{2a}} \\&=&\frac{12\pm\sqrt{144-96}}{6} \\&=&\frac{12\pm\sqrt{48}}{6} \\&=&\frac{12\pm4\sqrt{3}}{6} \\&=&\frac{6\pm2\sqrt{3}}{3} \\&=&\frac{2}{3}(3\pm\sqrt{3}) \end{eqnarray} $$

解と図との対応

$$ \begin{eqnarray} \\k_{l_1}&=&\frac{2}{3}(3+\sqrt{3}) \\k_{l_2}&=&\frac{2}{3}(3-\sqrt{3}) \\k_{l_1}&\gt&k_{l_2}\;\cdots\;よって傾きの大小関係から図中l_1の傾きk_{l_1}であり,l_2の傾きがk_{l_2}である \end{eqnarray} $$ 図より\(l_1\)の接点位置の角度\(\theta_1\)は\(\frac{\pi}{2}\)を超えているので範囲外となり,点\((0,1)\)を通る直線\(j\)の傾きが最大値となる. $$ \begin{eqnarray} k_{j}&=&\frac{\sin{\left(\theta\right)}+3}{\cos{\left(\theta\right)}+2} &=&\frac{\sin{\left(\frac{\pi}{2}\right)}+3}{\cos{\left(\frac{\pi}{2}\right)}+2} &=&\frac{1+3}{0+2} &=&\frac{4}{2} &=&2 \end{eqnarray} $$

答え

以上より与式の最大値最小値はそれぞれ,最大値\(2\),最小値\(\frac{2}{3}\left(3-\sqrt{3}\right)\)となる.

確認:角度\(\theta_{1,2}\)を求める

直交する直線の傾き

直線\(l\)と直交する直線\(l^{\prime}\)の傾き\(s\)が\(\tan{\left(\theta\right)}\)となる. また直交する直線同士の傾きは掛け合わせると-1となる. $$ \begin{eqnarray} k_{1}\cdot s_{1}&=&-1 \\s_1&=&\frac{-1}{k_{1}} \\k_{2}\cdot s_{2}&=&-1 \\s_2&=&\frac{-1}{k_{2}} \end{eqnarray} $$

\(s_1\)から\(\theta_{1}\)を求める

直線\(l_1\)と直交する直線\(l_1^{\prime}\)の傾き\(s_1\)を求める. $$ \begin{eqnarray} \\s_1&=&\frac{-1}{k_1} \\&=&\frac{-1}{\frac{2}{3}(3+\sqrt{3})} \;\cdots\;k_1=\frac{2}{3}(3+\sqrt{3}) \\&=&\frac{3}{2}\frac{-1}{3+\sqrt{3}} \\&=&\frac{3}{2}\frac{-1}{3+\sqrt{3}}\frac{3-\sqrt{3}}{3-\sqrt{3}} \\&=&\frac{3}{2}\frac{-3+\sqrt{3}}{9-3} \\&=&\frac{3}{2}\frac{-3+\sqrt{3}}{6} \\&=&\frac{3}{2}\frac{1}{6}\left(-3+\sqrt{3}\right) \\&=&\frac{1}{4}\left(-3+\sqrt{3}\right) \\&=&\frac{-3+\sqrt{3}}{4}\lt0 \\\theta_1&=&\tan^{-1}\left(\frac{-3+\sqrt{3}}{4}\right),\tan^{-1}\left(\frac{-3+\sqrt{3}}{4}\right)+\pi \;\cdots\;\tan^{-1}の値域を\frac{-\pi}{2}から\frac{\pi}{2}とする \end{eqnarray} $$ \(s_1\)が負の値ということは\(s_1=\tan\left(\theta_1\right)\)とした際の\(\theta_1\)は単位円第二,四象限上の点の角度となる.
が,図よりこの角度は単位円第二象限上の点の角度なので\(\theta_1=\tan^{-1}\left(s_1\right)+\pi=\tan^{-1}\left(\frac{-3+\sqrt{3}}{4}\right)+\pi\)となる.

\(s_2\)から\(\theta_{2}\)を求める

直線\(l_2\)と直交する直線\(l_2^{\prime}\)の傾き\(s_2\)を求める. $$ \begin{eqnarray} \\s_2&=&\frac{-1}{k_2} \\&=&\frac{-1}{\frac{2}{3}(3-\sqrt{3})} \;\cdots\;k_2=\frac{2}{3}(3-\sqrt{3}) \\&=&\frac{3}{2}\frac{-1}{3-\sqrt{3}} \\&=&\frac{3}{2}\frac{-1}{3-\sqrt{3}}\frac{3+\sqrt{3}}{3+\sqrt{3}} \\&=&\frac{3}{2}\frac{-3-\sqrt{3}}{9-3} \\&=&\frac{3}{2}\frac{-3-\sqrt{3}}{6} \\&=&\frac{3}{2}\frac{1}{6}\left(-3-\sqrt{3}\right) \\&=&\frac{1}{4}\left(-3-\sqrt{3}\right) \\&=&\frac{-3-\sqrt{3}}{4}\lt0 \\\theta_2&=&\tan^{-1}\left(\frac{-3-\sqrt{3}}{4}\right),\tan^{-1}\left(\frac{-3-\sqrt{3}}{4}\right)+\pi \;\cdots\;\tan^{-1}の値域を\frac{-\pi}{2}から\frac{\pi}{2}とする \end{eqnarray} $$ \(s_2\)が負の値ということは\(s_2=\tan\left(\theta_2\right)\)とした際の\(\theta_2\)は単位円第二,四象限上の点の角度となる.
が,図よりこの角度は単位円第四象限上の点の角度なので\(\theta_2=\tan^{-1}\left(s_2\right)=\tan^{-1}\left(\frac{-3-\sqrt{3}}{4}\right)\)となる.

実対称行列を回転行列(実直交行列)と実対角行列で表現する

$$\begin{eqnarray} S_{2}&=&\begin{bmatrix} x & y \\ y & z \end{bmatrix} \;\cdots\;S_{2}:x,y,zを実数とする2\times2の実対称行列 \\&&\:\cdots\;\small{実対称行列:S_{2}=S_{2}^T(対称行列),S_{2}=S_{2}^{*}(実行列(各要素の複素共役が変わらない,虚部が0))} \\ \\R(\theta)&=&\begin{bmatrix} \cos\left(\theta\right) & -\sin\left(\theta\right) \\ \sin\left(\theta\right) & \cos\left(\theta\right) \end{bmatrix} \\R(\theta)^T&=&\begin{bmatrix} \cos\left(\theta\right) & \sin\left(\theta\right) \\ -\sin\left(\theta\right) & \cos\left(\theta\right) \end{bmatrix} =\begin{bmatrix} \cos\left(-\theta\right) & -\sin\left(-\theta\right) \\ \sin\left(-\theta\right) & \cos\left(-\theta\right) \end{bmatrix} =R(-\theta)\;\cdots\;逆回転 \\R(\theta)R(\theta)^T&=&R(\theta)^TR(\theta)=I \;\cdots\;R(\theta):直交行列(特に各要素の複素共役が変わらないので実直交行列) \\ \\\Lambda&=&\begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \;\cdots\;\lambda_1,\lambda_2はS_{2}の固有値 \\&&\;\cdots\;対角行列(特に各要素の複素共役が変わらない場合,実対角行列) \end{eqnarray}$$ $$\begin{eqnarray} S_{2}&=&R(\theta) \Lambda R(\theta)^T \\&=&\begin{bmatrix} \cos\left(\theta\right) & -\sin\left(\theta\right) \\ \sin\left(\theta\right) & \cos\left(\theta\right) \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} \cos\left(\theta\right) & \sin\left(\theta\right) \\ -\sin\left(\theta\right) & \cos\left(\theta\right) \end{bmatrix} \\&=&\begin{bmatrix} \lambda_1\cos\left(\theta\right) & -\lambda_2\sin\left(\theta\right) \\ \lambda_1\sin\left(\theta\right) & \lambda_2\cos\left(\theta\right) \end{bmatrix} \begin{bmatrix} \cos\left(\theta\right) & \sin\left(\theta\right) \\ -\sin\left(\theta\right) & \cos\left(\theta\right) \end{bmatrix} \\&=&\begin{bmatrix} \lambda_1\cos^2\left(\theta\right) +\lambda_2\sin^2\left(\theta\right) & \left(\lambda_1-\lambda_2\right)\cos\left(\theta\right)\sin\left(\theta\right) \\ \left(\lambda_1-\lambda_2\right)\cos\left(\theta\right)\sin\left(\theta\right) & \lambda_1\sin^2\left(\theta\right) +\lambda_2\cos^2\left(\theta\right) \end{bmatrix} \\ \\x&=&\lambda_1\cos^2\left(\theta\right) +\lambda_2\sin^2\left(\theta\right) \\&=&\frac{1}{2}2\left\{\lambda_1\cos^2\left(\theta\right) +\lambda_2\sin^2\left(\theta\right)\right\} \\&=&\frac{1}{2}\left\{2\lambda_1\cos^2\left(\theta\right) +2\lambda_2\sin^2\left(\theta\right)\right\} \\&=&\frac{1}{2}\left\{\lambda_1\left(\cos^2\left(\theta\right)+1-\sin^2\left(\theta\right)\right) +\lambda_2\left(\sin^2\left(\theta\right)+1-\cos^2\left(\theta\right)\right)\right\} \;\cdots\;\cos^2\left(\theta\right)=1-\sin^2\left(\theta\right),\;\sin^2\left(\theta\right)=1-\cos^2\left(\theta\right) \\&=&\frac{1}{2}\left\{\lambda_1\left(\cos^2\left(\theta\right)+1-\sin^2\left(\theta\right)\right) +\lambda_2\left(1-\left(\cos^2\left(\theta\right)-\sin^2\left(\theta\right)\right)\right)\right\} \\&=&\frac{1}{2}\left\{\lambda_1\left(\cos\left(2\theta\right)+1\right) +\lambda_2\left(1-\cos\left(2\theta\right)\right)\right\} \;\cdots\;\cos\left(2\theta\right)=\cos^2\left(\theta\right)-\sin^2\left(\theta\right) \\&=&\frac{1}{2}\left\{ \lambda_1 \cos\left(2\theta\right)+\lambda_1+\lambda_2-\lambda_2\cos\left(2\theta\right)\right\} \\&=&\frac{1}{2}\left\{ \left( \lambda_1-\lambda_2\right) \cos\left(2\theta\right)+\lambda_1+\lambda_2\right\} \\y&=&\left(\lambda_1-\lambda_2\right)\cos\left(\theta\right)\sin\left(\theta\right) \\&=&\frac{1}{2}2\left(\lambda_1-\lambda_2\right)\cos\left(\theta\right)\sin\left(\theta\right) \\&=&\frac{1}{2}\left(\lambda_1-\lambda_2\right)\sin\left(2\theta\right) \;\cdots\;\sin\left(2\theta\right)=2\cos\left(\theta\right)\sin\left(\theta\right) \\z&=&\lambda_1\sin^2\left(\theta\right) +\lambda_2\cos^2\left(\theta\right) \\&=&\frac{1}{2}2\left\{\lambda_1\sin^2\left(\theta\right) +\lambda_2\cos^2\left(\theta\right)\right\} \\&=&\frac{1}{2}\left\{2\lambda_1\sin^2\left(\theta\right) +2\lambda_2\cos^2\left(\theta\right)\right\} \\&=&\frac{1}{2}\left\{\lambda_1\left(\sin^2\left(\theta\right)+1-\cos^2\left(\theta\right)\right) +\lambda_2\left(\cos^2\left(\theta\right)+1-\sin^2\left(\theta\right)\right)\right\} \;\cdots\;\sin^2\left(\theta\right)=1-\cos^2\left(\theta\right),\;\cos^2\left(\theta\right)=1-\sin^2\left(\theta\right) \\&=&\frac{1}{2}\left\{\lambda_1\left(1-\left(\cos^2\left(\theta\right)-\sin^2\left(\theta\right)\right)\right) +\lambda_2\left(\cos^2\left(\theta\right)+1-\sin^2\left(\theta\right)\right)\right\} \\&=&\frac{1}{2}\left\{\lambda_1\left(1-\cos\left(2\theta\right)\right) +\lambda_2\left(\cos\left(2\theta\right)+1\right)\right\} \;\cdots\;\cos\left(2\theta\right)=\cos^2\left(\theta\right)-\sin^2\left(\theta\right) \\&=&\frac{1}{2}\left\{\lambda_1-\lambda_1\cos\left(2\theta\right) + \lambda_2\cos\left(2\theta\right)+\lambda_2\right\} \\&=&\frac{1}{2}\left\{ -\left( \lambda_1-\lambda_2\right) \cos\left(2\theta\right)+\lambda_1+\lambda_2\right\} \end{eqnarray}$$ $$ \left\{ \begin{eqnarray} x&=&\frac{1}{2}\left\{ \left( \lambda_1-\lambda_2\right) \cos\left(2\theta\right)+\lambda_1+\lambda_2\right\} \\y&=&\frac{1}{2}\left(\lambda_1-\lambda_2\right)\sin\left(2\theta\right) \\z&=&\frac{1}{2}\left\{ -\left( \lambda_1-\lambda_2\right) \cos\left(2\theta\right)+\lambda_1+\lambda_2\right\} \end{eqnarray} \right. $$ $$\begin{eqnarray} 2x&=& \left( \lambda_1-\lambda_2\right) \cos\left(2\theta\right)+\lambda_1+\lambda_2 \\2z&=&-\left( \lambda_1-\lambda_2\right) \cos\left(2\theta\right)+\lambda_1+\lambda_2 \\2x-2z&=&\left( \lambda_1-\lambda_2\right) \cos\left(2\theta\right)+\lambda_1+\lambda_2 - \left\{-\left( \lambda_1-\lambda_2\right) \cos\left(2\theta\right)+\lambda_1+\lambda_2\right\} \\2(x-z)&=&\left( \lambda_1-\lambda_2\right) \cos\left(2\theta\right)+\lambda_1+\lambda_2 + \left( \lambda_1-\lambda_2\right) \cos\left(2\theta\right)-\lambda_1-\lambda_2 \\2(x-z)&=&2\left( \lambda_1-\lambda_2\right) \cos\left(2\theta\right) \\\cos\left(2\theta\right)&=&\frac{x-z}{\lambda_1-\lambda_2}=\frac{x-z}{\sqrt{(x-z)^2+4y^2}} \;\cdots\;\href{https://shikitenkai.blogspot.com/2020/11/2x2.html}{\lambda_{1}-\lambda_{2}=\sqrt{(x-z)^2+4y^2}} \\\sin\left(2\theta\right)&=&\frac{2y}{\lambda_1-\lambda_2}=\frac{2y}{\sqrt{(x-z)^2+4y^2}} \;\cdots\;\href{https://shikitenkai.blogspot.com/2020/11/2x2.html}{\lambda_{1}-\lambda_{2}=\sqrt{(x-z)^2+4y^2}} \end{eqnarray}$$ \(\lambda_1,\lambda_2\)だけでなく\(\theta\)も\(x,y,z\)により一意に決まる.

二次方程式の解の公式

$$\begin{eqnarray} ax^2+bx+c&=&0 \\x^2+\frac{b}{a}x+\frac{c}{a}&=&0 \\x^2+\frac{b}{a}x+\color{red}{\left(\frac{b}{2a}\right)^2-\left(\frac{b}{2a}\right)^2}\color{black}{}+\frac{c}{a}&=&0 \;\cdots\;\left(\frac{b}{2a}\right)^2-\left(\frac{b}{2a}\right)^2=0 \\x^2+\color{red}{2}\color{black}{}\frac{b}{\color{red}{2}\color{black}{}a}x+\left(\frac{b}{2a}\right)^2-\left(\frac{b}{2a}\right)^2+\frac{c}{a}\frac{4a}{4a}&=&0 \\\left(x+\frac{b}{2a}\right)^2-\frac{b^2}{4a^2}+\frac{4ac}{4a^2}&=&0 \;\cdots\;(x+a)^2=x^2+2ax+a^2 \\\left(x+\frac{b}{2a}\right)^2-\frac{b^2-4ac}{4a^2}&=&0 \\\left(x+\frac{b}{2a}\right)^2&=&\frac{b^2-4ac}{4a^2} \\x+\frac{b}{2a}&=&\pm\sqrt{\frac{b^2-4ac}{4a^2}} \\x&=&-\frac{b}{2a}\pm\sqrt{\frac{b^2-4ac}{4a^2}} \\&=&\frac{-b\pm\sqrt{b^2-4ac}}{2a} \end{eqnarray}$$

2x2対称行列の固有値の差

$$\begin{eqnarray} S_2&=&\begin{bmatrix} x & y \\ y & z \end{bmatrix} \;\cdots\;S:対称行列 \\det\left(S-\lambda I\right) &=&\begin{bmatrix} x - \lambda & y \\ y & z - \lambda \end{bmatrix} \\&=&\left(x - \lambda\right)\left(z - \lambda\right)-y^2 \\&=&\lambda^2-(x+z)\lambda+xz-y^2 \\\lambda_{1,2} &=&\frac{-\left\{ -(x+z) \right\}\pm\sqrt{\left\{-(x+z)\right\}^2-4\left(xz-y^2\right)}}{2} \;\cdots\;\href{https://shikitenkai.blogspot.com/2020/11/blog-post.html}{x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}} \\&=&\frac{1}{2}\left(x+z \pm \sqrt{\left\{-(x+z)\right\}^2-4\left(xz-y^2\right)}\right) \\&=&\frac{1}{2}\left(x+z \pm \sqrt{x^2+2xz+z^2-4xz+4y^2}\right) \\&=&\frac{1}{2}\left(x+z \pm \sqrt{x^2-2xz+z^2+4y^2}\right) \\&=&\frac{1}{2}\left(x+z \pm \sqrt{(x-z)^2+4y^2}\right) \\\lambda_{1}-\lambda_{2}&=&\frac{1}{2}\left(x+z + \sqrt{(x-z)^2+4y^2}\right) - \frac{1}{2}\left(x+z - \sqrt{(x-z)^2+4y^2}\right) \;\cdots\;\lambda_{1}\gt\lambda_{2}とする \\&=&\frac{1}{2}\left(x+z + \sqrt{(x-z)^2+4y^2} - x -z + \sqrt{(x-z)^2+4y^2}\right) \\&=&\frac{1}{2}\left(2\sqrt{(x-z)^2+4y^2}\right) \\&=&\sqrt{(x-z)^2+4y^2} \end{eqnarray}$$