実対称行列を回転行列(実直交行列)と実対角行列で表現する
$$\begin{eqnarray}
S_{2}&=&\begin{bmatrix}
x & y \\
y & z
\end{bmatrix}
\;\cdots\;S_{2}:x,y,zを実数とする2\times2の実対称行列
\\&&\:\cdots\;\small{実対称行列:S_{2}=S_{2}^T(対称行列),S_{2}=S_{2}^{*}(実行列(各要素の複素共役が変わらない,虚部が0))}
\\
\\R(\theta)&=&\begin{bmatrix}
\cos\left(\theta\right) & -\sin\left(\theta\right) \\
\sin\left(\theta\right) & \cos\left(\theta\right)
\end{bmatrix}
\\R(\theta)^T&=&\begin{bmatrix}
\cos\left(\theta\right) & \sin\left(\theta\right) \\
-\sin\left(\theta\right) & \cos\left(\theta\right)
\end{bmatrix}
=\begin{bmatrix}
\cos\left(-\theta\right) & -\sin\left(-\theta\right) \\
\sin\left(-\theta\right) & \cos\left(-\theta\right)
\end{bmatrix}
=R(-\theta)\;\cdots\;逆回転
\\R(\theta)R(\theta)^T&=&R(\theta)^TR(\theta)=I
\;\cdots\;R(\theta):直交行列(特に各要素の複素共役が変わらないので実直交行列)
\\
\\\Lambda&=&\begin{bmatrix}
\lambda_1 & 0 \\
0 & \lambda_2
\end{bmatrix}
\;\cdots\;\lambda_1,\lambda_2はS_{2}の固有値
\\&&\;\cdots\;対角行列(特に各要素の複素共役が変わらない場合,実対角行列)
\end{eqnarray}$$
$$\begin{eqnarray}
S_{2}&=&R(\theta) \Lambda R(\theta)^T
\\&=&\begin{bmatrix}
\cos\left(\theta\right) & -\sin\left(\theta\right) \\
\sin\left(\theta\right) & \cos\left(\theta\right)
\end{bmatrix}
\begin{bmatrix}
\lambda_1 & 0 \\
0 & \lambda_2
\end{bmatrix}
\begin{bmatrix}
\cos\left(\theta\right) & \sin\left(\theta\right) \\
-\sin\left(\theta\right) & \cos\left(\theta\right)
\end{bmatrix}
\\&=&\begin{bmatrix}
\lambda_1\cos\left(\theta\right) & -\lambda_2\sin\left(\theta\right) \\
\lambda_1\sin\left(\theta\right) & \lambda_2\cos\left(\theta\right)
\end{bmatrix}
\begin{bmatrix}
\cos\left(\theta\right) & \sin\left(\theta\right) \\
-\sin\left(\theta\right) & \cos\left(\theta\right)
\end{bmatrix}
\\&=&\begin{bmatrix}
\lambda_1\cos^2\left(\theta\right) +\lambda_2\sin^2\left(\theta\right) & \left(\lambda_1-\lambda_2\right)\cos\left(\theta\right)\sin\left(\theta\right) \\
\left(\lambda_1-\lambda_2\right)\cos\left(\theta\right)\sin\left(\theta\right) & \lambda_1\sin^2\left(\theta\right) +\lambda_2\cos^2\left(\theta\right)
\end{bmatrix}
\\
\\x&=&\lambda_1\cos^2\left(\theta\right) +\lambda_2\sin^2\left(\theta\right)
\\&=&\frac{1}{2}2\left\{\lambda_1\cos^2\left(\theta\right) +\lambda_2\sin^2\left(\theta\right)\right\}
\\&=&\frac{1}{2}\left\{2\lambda_1\cos^2\left(\theta\right) +2\lambda_2\sin^2\left(\theta\right)\right\}
\\&=&\frac{1}{2}\left\{\lambda_1\left(\cos^2\left(\theta\right)+1-\sin^2\left(\theta\right)\right) +\lambda_2\left(\sin^2\left(\theta\right)+1-\cos^2\left(\theta\right)\right)\right\}
\;\cdots\;\cos^2\left(\theta\right)=1-\sin^2\left(\theta\right),\;\sin^2\left(\theta\right)=1-\cos^2\left(\theta\right)
\\&=&\frac{1}{2}\left\{\lambda_1\left(\cos^2\left(\theta\right)+1-\sin^2\left(\theta\right)\right) +\lambda_2\left(1-\left(\cos^2\left(\theta\right)-\sin^2\left(\theta\right)\right)\right)\right\}
\\&=&\frac{1}{2}\left\{\lambda_1\left(\cos\left(2\theta\right)+1\right) +\lambda_2\left(1-\cos\left(2\theta\right)\right)\right\}
\;\cdots\;\cos\left(2\theta\right)=\cos^2\left(\theta\right)-\sin^2\left(\theta\right)
\\&=&\frac{1}{2}\left\{ \lambda_1 \cos\left(2\theta\right)+\lambda_1+\lambda_2-\lambda_2\cos\left(2\theta\right)\right\}
\\&=&\frac{1}{2}\left\{ \left( \lambda_1-\lambda_2\right) \cos\left(2\theta\right)+\lambda_1+\lambda_2\right\}
\\y&=&\left(\lambda_1-\lambda_2\right)\cos\left(\theta\right)\sin\left(\theta\right)
\\&=&\frac{1}{2}2\left(\lambda_1-\lambda_2\right)\cos\left(\theta\right)\sin\left(\theta\right)
\\&=&\frac{1}{2}\left(\lambda_1-\lambda_2\right)\sin\left(2\theta\right)
\;\cdots\;\sin\left(2\theta\right)=2\cos\left(\theta\right)\sin\left(\theta\right)
\\z&=&\lambda_1\sin^2\left(\theta\right) +\lambda_2\cos^2\left(\theta\right)
\\&=&\frac{1}{2}2\left\{\lambda_1\sin^2\left(\theta\right) +\lambda_2\cos^2\left(\theta\right)\right\}
\\&=&\frac{1}{2}\left\{2\lambda_1\sin^2\left(\theta\right) +2\lambda_2\cos^2\left(\theta\right)\right\}
\\&=&\frac{1}{2}\left\{\lambda_1\left(\sin^2\left(\theta\right)+1-\cos^2\left(\theta\right)\right) +\lambda_2\left(\cos^2\left(\theta\right)+1-\sin^2\left(\theta\right)\right)\right\}
\;\cdots\;\sin^2\left(\theta\right)=1-\cos^2\left(\theta\right),\;\cos^2\left(\theta\right)=1-\sin^2\left(\theta\right)
\\&=&\frac{1}{2}\left\{\lambda_1\left(1-\left(\cos^2\left(\theta\right)-\sin^2\left(\theta\right)\right)\right) +\lambda_2\left(\cos^2\left(\theta\right)+1-\sin^2\left(\theta\right)\right)\right\}
\\&=&\frac{1}{2}\left\{\lambda_1\left(1-\cos\left(2\theta\right)\right) +\lambda_2\left(\cos\left(2\theta\right)+1\right)\right\}
\;\cdots\;\cos\left(2\theta\right)=\cos^2\left(\theta\right)-\sin^2\left(\theta\right)
\\&=&\frac{1}{2}\left\{\lambda_1-\lambda_1\cos\left(2\theta\right) + \lambda_2\cos\left(2\theta\right)+\lambda_2\right\}
\\&=&\frac{1}{2}\left\{ -\left( \lambda_1-\lambda_2\right) \cos\left(2\theta\right)+\lambda_1+\lambda_2\right\}
\end{eqnarray}$$
$$
\left\{
\begin{eqnarray}
x&=&\frac{1}{2}\left\{ \left( \lambda_1-\lambda_2\right) \cos\left(2\theta\right)+\lambda_1+\lambda_2\right\}
\\y&=&\frac{1}{2}\left(\lambda_1-\lambda_2\right)\sin\left(2\theta\right)
\\z&=&\frac{1}{2}\left\{ -\left( \lambda_1-\lambda_2\right) \cos\left(2\theta\right)+\lambda_1+\lambda_2\right\}
\end{eqnarray}
\right.
$$
$$\begin{eqnarray}
2x&=& \left( \lambda_1-\lambda_2\right) \cos\left(2\theta\right)+\lambda_1+\lambda_2
\\2z&=&-\left( \lambda_1-\lambda_2\right) \cos\left(2\theta\right)+\lambda_1+\lambda_2
\\2x-2z&=&\left( \lambda_1-\lambda_2\right) \cos\left(2\theta\right)+\lambda_1+\lambda_2 - \left\{-\left( \lambda_1-\lambda_2\right) \cos\left(2\theta\right)+\lambda_1+\lambda_2\right\}
\\2(x-z)&=&\left( \lambda_1-\lambda_2\right) \cos\left(2\theta\right)+\lambda_1+\lambda_2 + \left( \lambda_1-\lambda_2\right) \cos\left(2\theta\right)-\lambda_1-\lambda_2
\\2(x-z)&=&2\left( \lambda_1-\lambda_2\right) \cos\left(2\theta\right)
\\\cos\left(2\theta\right)&=&\frac{x-z}{\lambda_1-\lambda_2}=\frac{x-z}{\sqrt{(x-z)^2+4y^2}}
\;\cdots\;\href{https://shikitenkai.blogspot.com/2020/11/2x2.html}{\lambda_{1}-\lambda_{2}=\sqrt{(x-z)^2+4y^2}}
\\\sin\left(2\theta\right)&=&\frac{2y}{\lambda_1-\lambda_2}=\frac{2y}{\sqrt{(x-z)^2+4y^2}}
\;\cdots\;\href{https://shikitenkai.blogspot.com/2020/11/2x2.html}{\lambda_{1}-\lambda_{2}=\sqrt{(x-z)^2+4y^2}}
\end{eqnarray}$$
\(\lambda_1,\lambda_2\)だけでなく\(\theta\)も\(x,y,z\)により一意に決まる.
登録:
コメントの投稿 (Atom)
0 件のコメント:
コメントを投稿