間違いしかありません.コメントにてご指摘いただければ幸いです(気が付いた点を特に断りなく頻繁に書き直していますのでご注意ください).

正規分布に従う互いに独立な標本における分散の最尤推定量を求める

正規分布に従う互いに独立な標本における分散の最尤推定量を求める

\(x_1,\cdots,x_n\)を\(N\left(\mu,\sigma^2\right)\)からの独立な観測値とする時の\(\sigma^2\)の最尤推定を考える.

確率密度凾数

$$ \begin{eqnarray} X_k&\sim&N\left(\mu,\sigma^2\right) \\f\left(x;\mu,\sigma^2\right)&=&\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}} \;\cdots\;正規分布の確率密度凾数 \\f\left(x_1,\cdots,x_n;\mu,\sigma^2\right)&=&\left\{\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x_1-\mu)^2}{2\sigma^2}}\right\} \left\{\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x_2-\mu)^2}{2\sigma^2}}\right\} \cdots \left\{\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x_n-\mu)^2}{2\sigma^2}}\right\} \\&=&\left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^ne^{-\frac{1}{2\sigma^2}\sum_{k=1}^n(x_k-\mu)^2} \end{eqnarray} $$

\(\mu\)が既知の場合の\(\sigma^2\)の最尤推定

確率密度凾数から尤度凾数(確率密度凾数に対して,確率変数や既知のパラメータを定数として,未知のパラメータを変数とみなす)の対数をとり,対数尤度凾数を用意する. $$ \begin{eqnarray} \\l\left(\sigma^2;x_1,\cdots,x_n,\mu\right) &=&\log{ \left\{ \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^ne^{-\frac{1}{2\sigma^2}\sum_{k=1}^n(x_k-\mu)^2} \right\}} \\&=&\log{ \left\{ \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n\right\}}+\log{ \left\{ e^{-\frac{1}{2\sigma^2}\sum_{k=1}^n(x_k-\mu)^2} \right\}} \;\cdots\;\log{\left(AB\right)}=\log{\left(A\right)}+\log{\left(B\right)} \\&=&\log{ \left\{ \left(2\pi\sigma^2\right)^{-\frac{n}{2}}\right\}}+\log{ \left\{ e^{-\frac{1}{2\sigma^2}\sum_{k=1}^n(x_k-\mu)^2} \right\}} \;\cdots\;\frac{1}{A}=A^{-1} \\&=&-\frac{n}{2}\log{ \left( 2\pi\sigma^2 \right)}-\frac{1}{2\sigma^2}\sum_{k=1}^n(x_k-\mu)^2\log{ \left( e \right)} \;\cdots\;\log{\left(A^B\right)}=B\log{\left(A\right)} \\&=&-\frac{n}{2}\log{ \left( 2\pi\sigma^2 \right)}-\frac{1}{2\sigma^2}\sum_{k=1}^n(x_k-\mu)^2 \;\cdots\;\log{ \left( e \right)}=1 \end{eqnarray} $$ 極値を考えるために変数である\(\sigma^2\)で微分する(スコア凾数). $$ \begin{eqnarray} \\\frac{\mathrm{d}}{\mathrm{d} \sigma^2}l\left(\sigma^2;x_1,\cdots,x_n,\mu\right) &=&\frac{\mathrm{d}}{\mathrm{d} \sigma^2}\left\{-\frac{n}{2}\log{ \left( 2\pi\sigma^2 \right)}-\frac{1}{2\sigma^2}\sum_{k=1}^n(x_k-\mu)^2\right\} \\&=&-\frac{n}{2}\frac{\mathrm{d}}{\mathrm{d} \sigma^2}\log{ \left( 2\pi\sigma^2 \right)}-\frac{1}{2}\left\{\sum_{k=1}^n(x_k-\mu)^2\right\}\frac{\mathrm{d}}{\mathrm{d} \sigma^2}\frac{1}{\sigma^2} \\&&\;\cdots\;\frac{\mathrm{d}}{\mathrm{d}x}\left\{f(x)+g(x)\right\}=\frac{\mathrm{d}}{\mathrm{d}x}f(x)+\frac{\mathrm{d}}{\mathrm{d}x}g(x) ,\;\frac{\mathrm{d}}{\mathrm{d}x}cf(x)=c\frac{\mathrm{d}}{\mathrm{d}x}f(x) \\&=&-\frac{n}{2}\frac{\mathrm{d}}{\mathrm{d} u}\log{ \left( u \right)}\frac{\mathrm{d}u}{\mathrm{d}\sigma^2}-\frac{1}{2}\left\{\sum_{k=1}^n(x_k-\mu)^2\right\}\frac{\mathrm{d}}{\mathrm{d}v}v^{-1}\frac{\mathrm{d}v}{\mathrm{d}\sigma^2} \\&&\;\cdots\;u=2\pi\sigma^2,\frac{\mathrm{d}u}{\mathrm{d}\sigma^2}=2\pi, v=\sigma^2,\frac{\mathrm{d}v}{\mathrm{d}\sigma^2}=1 \\&=&-\frac{n}{2}\frac{1}{u}2\pi-\frac{1}{2}\left\{\sum_{k=1}^n(x_k-\mu)^2\right\}\left(-v^{-2}\right)\cdot1 \\&=&-\frac{n}{2}\frac{1}{2\pi\sigma^2}2\pi-\frac{1}{2}\left\{\sum_{k=1}^n(x_k-\mu)^2\right\}\left\{-\left(\sigma^2\right)^{-2}\right\} \;\cdots\;u=2\pi\sigma^2,\;v=\sigma^2 \\&=&-\frac{n}{2}\frac{1}{\sigma^2}-\frac{1}{2}\left\{\sum_{k=1}^n(x_k-\mu)^2\right\}\left\{\frac{-1}{\left(\sigma^2\right)^2}\right\} \\&=&-\frac{n}{2\sigma^2}+\frac{1}{2\sigma^4}\left\{\sum_{k=1}^n(x_k-\mu)^2\right\} \;\cdots\;\left(A^B\right)^C=A^{BC} \end{eqnarray} $$ この式が0となる\(\sigma^2(=\hat{\sigma}^2)\)を求める(極値である). $$ \begin{eqnarray} \frac{\mathrm{d}}{\mathrm{d} \sigma^2}l\left(\sigma^2;x_1,\cdots,x_n,\mu\right)=-\frac{n}{2\hat{\sigma}^2}+\frac{1}{2\sigma^4}\left\{\sum_{k=1}^n(x_k-\mu)^2\right\}&=&0 \\\frac{1}{2\hat{\sigma}^2}\left[-n+\frac{1}{\hat{\sigma}^2}\left\{\sum_{k=1}^n(x_k-\mu)^2\right\}\right]&=&0 \\-n+\frac{1}{\hat{\sigma}^2}\left\{\sum_{k=1}^n(x_k-\mu)^2\right\}&=&0 \;\cdots\;\frac{1}{2\hat{\sigma}^2}は\hat{\sigma}^2が有限なら0にならないので0になるのは\left[\right]の中が0の時 \\\frac{1}{\hat{\sigma}^2}\left\{\sum_{k=1}^n(x_k-\mu)^2\right\}&=&n \\\frac{1}{\hat{\sigma}^2}&=&\frac{n}{\sum_{k=1}^n(x_k-\mu)^2} \\\hat{\sigma}^2&=&\frac{1}{n}\sum_{k=1}^n(x_k-\mu)^2 \;\cdots\;両辺とも逆数をとった. \end{eqnarray} $$

\(\mu\)が未知の場合の\(\sigma^2\)の最尤推定

対数尤度凾数を用意する(上と同じ). $$ \begin{eqnarray} \\l\left(\mu,\sigma^2;x_1,\cdots,x_n\right) &=&-\frac{n}{2}\log{ \left( 2\pi\sigma^2 \right)}-\frac{1}{2\sigma^2}\sum_{k=1}^n(x_k-\mu)^2 \end{eqnarray} $$ 極値を考えるために変数である\(\mu,\sigma^2\)でそれぞれ偏微分する(スコア凾数). $$ \begin{eqnarray} \\\frac{\partial}{\partial \mu}l\left(\mu, \sigma^2;x_1,\cdots,x_n\right) &=&\frac{\partial}{\partial \mu}\left\{-\frac{n}{2}\log{ \left( 2\pi\sigma^2 \right)}-\frac{1}{2\sigma^2}\sum_{k=1}^n(x_k-\mu)^2\right\} \\&=&\frac{\partial}{\partial \mu}\left\{-\frac{n}{2}\log{ \left( 2\pi\sigma^2 \right)}\right\}+\frac{\partial}{\partial \mu}\left\{-\frac{1}{2\sigma^2}\sum_{k=1}^n(x_k-\mu)^2\right\} \\&&\;\cdots\;\frac{\partial}{\partial x}\left\{f(x,y)+g(x,y)\right\} =\frac{\partial}{\partial x}f(x,y) +\frac{\partial}{\partial x}g(x,y) \\&=&-\frac{1}{2\sigma^2}\frac{\mathrm{d}}{\mathrm{d} \mu}\sum_{k=1}^n(x_k-\mu)^2 \;\cdots\;\frac{\mathrm{d}}{\mathrm{d}x}c=0,\;\frac{\mathrm{d}}{\mathrm{d}x}cf(x)=c\frac{\mathrm{d}}{\mathrm{d}x}f(x) \\&=&-\frac{1}{2\sigma^2}\sum_{k=1}^n\frac{\mathrm{d}}{\mathrm{d} \mu}(x_k-\mu)^2 \\&&\;\cdots\;\frac{\mathrm{d}}{\mathrm{d}x}\sum_{k=1}^nf(x_k)=\frac{\mathrm{d}}{\mathrm{d}x}\left\{f(x_1)+\cdots+f(x_n)\right\}=\frac{\mathrm{d}}{\mathrm{d}x}f(x_1)+\cdots+\frac{\mathrm{d}}{\mathrm{d}x}f(x_n)=\sum_{k=1}^n\frac{\mathrm{d}}{\mathrm{d}x}f(x_k) \\&=&-\frac{1}{2\sigma^2}\sum_{k=1}^n\frac{\mathrm{d}}{\mathrm{d} u}u^2\frac{\mathrm{d}u}{\mathrm{d}\mu} \;\cdots\;u=x_k-\mu,\frac{\mathrm{d}u}{\mathrm{d}\mu}=-1 \\&=&-\frac{1}{2\sigma^2}\sum_{k=1}^n2u\cdot-1 \\&=&-\frac{1}{2\sigma^2}\sum_{k=1}^n-2\left(x_k-\mu\right) \;\cdots\;u=x_k-\mu \\&=&-\frac{1}{2\sigma^2}(-2)\sum_{k=1}^n\left(x_k-\mu\right) \\&=&\frac{1}{\sigma^2}\sum_{k=1}^n\left(x_k-\mu\right) \\\frac{\partial}{\partial \sigma^2}l\left(\mu, \sigma^2;x_1,\cdots,x_n\right) &=&\frac{\partial}{\partial \sigma^2}\left\{-\frac{n}{2}\log{ \left( 2\pi\sigma^2 \right)}-\frac{1}{2\sigma^2}\sum_{k=1}^n(x_k-\mu)^2\right\} \\&=&-\frac{n}{2\sigma^2}+\frac{1}{2\sigma^4}\left\{\sum_{k=1}^n(x_k-\mu)^2\right\} \;\cdots\;l(\sigma^2;x_1,\cdots,x_n,\mu)の時と同様 \end{eqnarray} $$ これらの式が0となる連立方程式として\(\mu(=\hat{\mu}),\sigma^2(=\tilde{\sigma}^2)\)を求める(極値である). $$ \begin{eqnarray} \left\{ \begin{array} \;\frac{1}{\tilde{\sigma}^2} \sum_{k=1}^n\left(x_k-\hat{\mu}\right)&=&0 \\-\frac{n}{2\tilde{\sigma}^2}+\frac{1}{2\tilde{\sigma}^4}\left\{\sum_{k=1}^n(x_k-\hat{\mu})^2\right\}&=&0 \end{array} \right. \end{eqnarray} $$ 第一式より $$ \begin{eqnarray} \frac{1}{\tilde{\sigma}^2} \sum_{k=1}^n\left(x_k-\hat{\mu}\right)&=&0 \\\sum_{k=1}^n\left(x_k-\hat{\mu}\right)&=&0 \;\cdots\;\frac{1}{\tilde{\sigma}^2}は\tilde{\sigma}^2が有限なら0にならないので\sum以降が0 \\\sum_{k=1}^nx_k-\sum_{k=1}^n\hat{\mu}&=&0 \;\cdots\;\sum (A-B)=\sum A - \sum B \\\sum_{k=1}^nx_k-n\hat{\mu}&=&0 \;\cdots\;\sum_{k=1}^n c = nc\;(c:定数) \\-n\hat{\mu}&=&-\sum_{k=1}^nx_k \\\hat{\mu}&=&\frac{1}{n}\sum_{k=1}^nx_k \\&=&\bar{x} \;\cdots\;\href{https://shikitenkai.blogspot.com/2019/07/specimen-random-variable.html}{標本平均\;\bar{x}=\frac{1}{n}\sum_{k=1}^nx_k} \end{eqnarray} $$ 第二式の\(\hat{\mu}\)にこれを代入して\(\tilde{\sigma}^2\)の最尤推定量を得る. $$ \begin{eqnarray} -\frac{n}{2\tilde{\sigma}^2}+\frac{1}{2\tilde{\sigma}^4}\left\{\sum_{k=1}^n(x_k-\hat{\mu})^2\right\}&=&0 \\-\frac{n}{2\tilde{\sigma}^2}+\frac{1}{2\tilde{\sigma}^4}\left\{\sum_{k=1}^n(x_k-\bar{x})^2\right\}&=&0 \;\cdots\;\hat{\mu}=\bar{x} \\\frac{1}{2\tilde{\sigma}^2}\left[-n+\frac{1}{\tilde{\sigma}^2}\left\{\sum_{k=1}^n(x_k-\bar{x})^2\right\}\right]&=&0 \\-n+\frac{1}{\tilde{\sigma}^2}\left\{\sum_{k=1}^n(x_k-\bar{x})^2\right\}&=&0 \;\cdots\;\frac{1}{2\tilde{\sigma}^2}は\tilde{\sigma}^2が有限なら0にならないので0になるのは\left[\right]の中が0の時 \\\frac{1}{\tilde{\sigma}^2}\left\{\sum_{k=1}^n(x_k-\bar{x})^2\right\}&=&n \\\frac{1}{\tilde{\sigma}^2}&=&\frac{n}{\sum_{k=1}^n(x_k-\bar{x})^2} \\\tilde{\sigma}^2&=&\frac{1}{n}\sum_{k=1}^n(x_k-\bar{x})^2 \\&=&s^2 \;\cdots\;\href{https://shikitenkai.blogspot.com/2019/07/specimen-random-variable.html}{標本分散\;s^2=\frac{1}{n}\sum_{k=1}^{n} (X_k - \overline{X})^2} \\&=&\frac{n-1}{n}\hat{\sigma}^2 \;\cdots\;\href{https://shikitenkai.blogspot.com/2019/07/specimen-random-variable.html}{不偏分散\;\hat{\sigma}^2=\frac{1}{n-1}\sum_{k=1}^{n} (X_k - \overline{X})^2} \\&&\;\cdots\;これは\href{https://shikitenkai.blogspot.com/2019/07/blog-post_68.html}{標本分散の期待値}でもある. \end{eqnarray} $$

0 件のコメント:

コメントを投稿