sinの二乗の不定積分
$$
\begin{eqnarray}
\int \sin^2{\left(\theta\right)}\mathrm{d}\theta
&=&\int \frac{1}{2}-\frac{1}{2}\cos{\left(2\theta\right)}\mathrm{d}\theta
\\&&\;\cdots\;\cos{\left(2\theta\right)}=\cos^2{\left(\theta\right)}-\sin^2{\left(\theta\right)}=\left(1-\sin^2{\left(\theta\right)}\right)-\sin^2{\left(\theta\right)}=1-2\sin^2{\left(\theta\right)}
\\&&\;\cdots\;\sin^2{\left(\theta\right)}=\frac{1}{2}-\frac{1}{2}\cos{\left(2\theta\right)}
\\&=&\frac{1}{2}\int \mathrm{d}\theta-\frac{1}{2}\int\cos{\left(2\theta\right)}\mathrm{d}\theta
\\&=&\frac{1}{2}\theta-\frac{1}{2}\int\cos{\left(2\theta\right)}\mathrm{d}\theta
\\&=&\frac{1}{2}\theta-\frac{1}{2}\int\cos{\left(\phi\right)}\frac{1}{2}\mathrm{d}\phi
\;\cdots\;\phi=2\theta, \frac{\mathrm{d}\phi}{\mathrm{d}\theta}=2,\mathrm{d}\theta=\frac{1}{2}\mathrm{d}\phi
\\&=&\frac{1}{2}\theta-\frac{1}{4}\int\cos{\left(\phi\right)}\mathrm{d}\phi\;\cdots\;\int cf(x)\mathrm{d}x=c\int f(x)\mathrm{d}x
\\&=&\frac{1}{2}\theta-\frac{1}{2}\left(\frac{1}{2}\sin{\left(\phi\right)}\right)
\;\cdots\;\int \cos{\left(x\right)}\mathrm{d}x= \sin{\left(x\right)}+C\;(C:積分定数)
\\&=&\frac{1}{2}\theta-\frac{1}{4}\sin{\left(\phi\right)}
\\&=&\frac{1}{2}\theta-\frac{1}{4}\sin{\left(2\theta\right)}
\\&=&\frac{1}{2}\theta-\frac{1}{2}\sin{\left(\theta\right)}\cos{\left(\theta\right)}
\\&=&\frac{1}{2}\left\{\theta-\sin{\left(\theta\right)}\cos{\left(\theta\right)}\right\}+C\;\cdots\;C:積分定数
\end{eqnarray}
$$
0 件のコメント:
コメントを投稿