1/√(x(a-x))の積分
不定積分
$$
\begin{eqnarray}
\int \frac{1}{\sqrt{x(a-x)}}\mathrm{d}x
&=&\int \left\{x(a-x)\right\}^{-\frac{1}{2}}\mathrm{d}x
\\&=&\int x^{-\frac{1}{2}}\left(a-x\right)^{-\frac{1}{2}}\mathrm{d}x
\\&=&\int u^{-1}(a-u^2)^{-\frac{1}{2}}\;2u\mathrm{d}u
\;\cdots\;u=\sqrt{x},\frac{\mathrm{d}u}{\mathrm{d}x}=\frac{1}{2\sqrt{x}},\mathrm{d}x=2\sqrt{x}\mathrm{d}u=2u\mathrm{d}u
\\&=&2\int (a-u^2)^{-\frac{1}{2}}\mathrm{d}u
\;\cdots\;u^{-1}u=1,\;\int cf(x)\mathrm{d}x=c\int f(x)\mathrm{d}x
\\&=&2\int \left[a-\left\{\sqrt{a}\sin{\left(\theta\right)}\right\}^2\right]^{-\frac{1}{2}}\;\sqrt{a}\cos{\left(\theta\right)}\mathrm{d}\theta
\;\cdots\;u=\sqrt{a}\sin{\left(\theta\right)},\frac{\mathrm{d}u}{\mathrm{d}\theta}=\sqrt{a}\cos{\left(\theta\right)},\mathrm{d}u=\sqrt{a}\cos{\left(\theta\right)}\mathrm{d}\theta
\\&=&2\sqrt{a}\int \left[a-\left\{\sqrt{a}^2\sin^2{\left(\theta\right)}\right\}\right]^{-\frac{1}{2}}\;\cos{\left(\theta\right)}\mathrm{d}\theta
\;\cdots\;(AB)^C=A^CB^C
\\&=&2\sqrt{a}\int \left\{a-a\sin^2{\left(\theta\right)}\right\}^{-\frac{1}{2}}\;\cos{\left(\theta\right)}\mathrm{d}\theta
\\&=&2\sqrt{a}\int \left[a\left\{1-\sin^2{\left(\theta\right)}\right\}\right]^{-\frac{1}{2}}\;\cos{\left(\theta\right)}\mathrm{d}\theta
\\&=&2\sqrt{a}\int a^{-\frac{1}{2}}\left\{1-\sin^2{\left(\theta\right)}\right\}^{-\frac{1}{2}}\;\cos{\left(\theta\right)}\mathrm{d}\theta
\\&=&2a\sqrt{a}a^{-\frac{1}{2}}\int \left\{1-\sin^2{\left(\theta\right)}\right\}^{-\frac{1}{2}}\;\cos{\left(\theta\right)}\mathrm{d}\theta
\\&=&2\int \left\{1-\sin^2{\left(\theta\right)}\right\}^{-\frac{1}{2}}\;\cos{\left(\theta\right)}\mathrm{d}\theta
\;\cdots\;\sqrt{A}A^{-\frac{1}{2}}=A^{\frac{1}{2}}A^{-\frac{1}{2}}=A^{-\frac{1}{2}+\frac{1}{2}}=A^0=1
\\&=&2\int \left\{\cos^2{\left(\theta\right)}\right\}^{-\frac{1}{2}}\;\cos{\left(\theta\right)}\mathrm{d}\theta
\;\cdots\;\cos^2{\left(\theta\right)}+\sin^2{\left(\theta\right)}=1,\cos^2{\left(\theta\right)}=1-\sin^2{\left(\theta\right)}
\\&=&2\int \left\{\cos{\left(\theta\right)}\right\}^{2(-\frac{1}{2})}\;\cos{\left(\theta\right)}\mathrm{d}\theta
\;\cdots\;\left(A^B\right)^C=A^{BC}
\\&=&2\int \left\{\cos{\left(\theta\right)}\right\}^{-1}\;\cos{\left(\theta\right)}\mathrm{d}\theta
\\&=&2\int \mathrm{d}\theta
\;\cdots\;A^{-1}A=1
\\&=&2\theta
\;\cdots\;\int \mathrm{d}x=x+C\;(C:積分定数)
\\&=&2\sin^{-1}{\left(\frac{u}{\sqrt{a}}\right)}
\;\cdots\;\theta=\sin^{-1}{\left(\frac{u}{\sqrt{a}}\right)}
\\&=&2\sin^{-1}{\left(\frac{\sqrt{x}}{\sqrt{a}}\right)}
\;\cdots\;u=\sqrt{x}
\\&=&2\sin^{-1}{\left(\sqrt{\frac{x}{a}}\right)}+C\;\cdots\;C:積分定数
\end{eqnarray}
$$
定積分
$$
\begin{eqnarray}
\int_0^a \frac{1}{\sqrt{x(a-x)}}\mathrm{d}x
&=&\left[2\sin^{-1}{\left(\sqrt{\frac{x}{a}}\right)}\right]_0^a
\\&=&\left\{2\sin^{-1}{\left(\sqrt{\frac{a}{a}}\right)}\right\}-\left\{2\sin^{-1}{\left(\sqrt{\frac{0}{a}}\right)}\right\}
\\&=&\left\{2\sin^{-1}{\left(1\right)}\right\}-\left\{2\sin^{-1}{\left(0\right)}\right\}
\\&=&\left(2\frac{\pi}{2}\right)-\left(2\cdot0\right)
\\&=&\pi-0
\\&=&\pi
\end{eqnarray}
$$
0 件のコメント:
コメントを投稿