間違いしかありません.コメントにてご指摘いただければ幸いです(気が付いた点を特に断りなく頻繁に書き直していますのでご注意ください).

cosの逆数(sec)の積分

$$ \begin{eqnarray} \int \frac{1}{\cos{\left(\theta\right)}} \mathrm{d}\theta &=&\int \sec{\left(\theta\right)} \mathrm{d}\theta \;\cdots\;\sec{\left(\theta\right)}=\frac{1}{\cos{\left(\theta\right)}} \\&=&\int \frac{1}{\cos{\left(\theta\right)}} \frac{\cos{\left(\theta\right)}}{\cos{\left(\theta\right)}} \mathrm{d}\theta \\&=& \int \frac{\cos{\left(\theta\right)}}{\cos^2{\left(\theta\right)}} \mathrm{d}\theta \\&=& \int \frac{\cos{\left(\theta\right)}}{1-\sin^2{\left(\theta\right)}} \mathrm{d}\theta \;\cdots\;\cos^2{\left(\theta\right)}=1-\sin^2{\left(\theta\right)} \\&=& \int \frac{1}{2} \left\{ \frac{\cos{\left(\theta\right)}}{1+\sin{\left(\theta\right)}} +\frac{\cos{\left(\theta\right)}}{1-\sin{\left(\theta\right)}} \right\} \mathrm{d}\theta \\&&\;\cdots\;\frac{\cos{\left(\theta\right)}}{1-\sin^2{\left(\theta\right)}} =\frac{\alpha}{1+\sin{\left(\theta\right)}} +\frac{\beta}{1-\sin{\left(\theta\right)}} \\&&\;\cdots\;\cos{\left(\theta\right)} =\alpha\left(1-\sin{\left(\theta\right)}\right)+\beta\left(1+\sin{\left(\theta\right)}\right) =\left(\alpha+\beta\right)+\left(\alpha-\beta\right)\sin{\left(\theta\right)} \\&&\;\cdots\; \left\{ \begin{array}{l} \cos{\left(\theta\right)}=\alpha+\beta \\0=\left(\alpha-\beta\right)\sin{\left(\theta\right)} \end{array} \right. \\&&\;\cdots\;\sin{\left(\theta\right)}は\thetaによっては0とはならないので,\alpha-\betaが常に0,よって\alpha=\beta. \\&&\;\cdots\;従って\alpha+\beta=\alpha+\alpha=2\alpha=\cos{\left(\theta\right)}. \\&&\;\cdots\;\alpha=\beta=\frac{1}{2}\cos{\left(\theta\right)} \\&&\;\cdots\;\frac{\cos{\left(\theta\right)}}{1-\sin^2{\left(\theta\right)}} =\frac{\frac{1}{2}\cos{\left(\theta\right)}}{1+\sin{\left(\theta\right)}} +\frac{\frac{1}{2}\cos{\left(\theta\right)}}{1-\sin{\left(\theta\right)}} \\&=& \frac{1}{2} \int \left\{ \frac{\cos{\left(\theta\right)}}{1+\sin{\left(\theta\right)}} +\frac{\cos{\left(\theta\right)}}{1-\sin{\left(\theta\right)}} \right\} \mathrm{d}\theta \\&=& \frac{1}{2} \left\{ \int \frac{\cos{\left(\theta\right)}}{1+\sin{\left(\theta\right)}}\mathrm{d}\theta +\int \frac{\cos{\left(\theta\right)}}{1-\sin{\left(\theta\right)}}\mathrm{d}\theta \right\} \\&=& \frac{1}{2} \left\{ \int \frac{\cos{\left(\theta\right)}}{u}\frac{1}{\cos{\left(\theta\right)}}\mathrm{d}u +\int \frac{\cos{\left(\theta\right)}}{v}\frac{-1}{\cos{\left(\theta\right)}}\mathrm{d}v \right\} \\&&\;\cdots\;u=1+\sin{\left(\theta\right)},\frac{\mathrm{d}u}{\mathrm{d}\theta}=\cos{\left(\theta\right)},\mathrm{d}\theta=\frac{1}{\cos{\left(\theta\right)}}\mathrm{d}u \\&&\;\cdots\;v=1-\sin{\left(\theta\right)},\frac{\mathrm{d}v}{\mathrm{d}\theta}=-\cos{\left(\theta\right)},\mathrm{d}\theta=\frac{-1}{\cos{\left(\theta\right)}}\mathrm{d}v \\&=& \frac{1}{2} \left( \int \frac{1}{u} \mathrm{d}u - \int \frac{1}{v} \mathrm{d}v \right) \\&=& \frac{1}{2} \left( \ln{\left|u\right|} - \ln{\left|v\right|} \right)\;\cdots\;\int \frac{1}{x} \mathrm{d}x=\ln{\left|x\right|}+C\;(C:積分定数) \\&=& \frac{1}{2} \ln{\frac{\left|u\right|}{\left|v\right|}}\;\cdots\;\log{A}-\log{B}=\log{\frac{A}{B}} \\&=& \frac{1}{2} \ln{\left|\frac{u}{v}\right|}\;\cdots\;\frac{\left|A\right|}{\left|B\right|}=\left|\frac{A}{B}\right| \\&=& \frac{1}{2} \ln{\left|\frac{1+\sin{\left(\theta\right)}}{1-\sin{\left(\theta\right)}}\right|} + C \;\cdots\;C:積分定数 \\もしくは, \\&=& \frac{1}{2} \ln{\left| \frac{1+\sin{\left(\theta\right)}}{1-\sin{\left(\theta\right)}} \right|}+ C \;\cdots\;A\log{B}=\log{B^A} \\&=& \frac{1}{2} \ln{\left| \left\{ \frac{1}{\cos{\left(\theta\right)}} +\tan{\left(\theta\right)} \right\}^2 \right|}+C \;\cdots\;\frac{ 1+\sin{\left(\theta\right)} }{ 1-\sin{\left(\theta\right)} }=\left\{ \frac{1}{\cos{\left(\theta\right)}} +\tan{\left(\theta\right)} \right\}^2 \;式変形は最後に記載 \\&=& \frac{1}{2} 2 \ln{\left| \frac{1}{\cos{\left(\theta\right)}} +\tan{\left(\theta\right)} \right|}+C \;\cdots\;\left(A^B\right)^\frac{1}{B}=A^\left(B\frac{1}{B}\right)=A^1=A \\&=& \ln{\left| \frac{1}{\cos{\left(\theta\right)}} +\tan{\left(\theta\right)} \right|}+C \\&=& \ln{\left| \sec{\left(\theta\right)} +\tan{\left(\theta\right)} \right|}+C \;\cdots\;\frac{1}{\cos{\left(\theta\right)}}=\sec{\left(\theta\right)} \end{eqnarray} $$
$$ \begin{eqnarray} \frac{ 1+\sin{\left(\theta\right)} }{ 1-\sin{\left(\theta\right)} } &=& \frac{1+\sin{\left(\theta\right)}}{1-\sin{\left(\theta\right)}} \;\frac{1+\sin{\left(\theta\right)}}{1+\sin{\left(\theta\right)}} \\&=& \frac{ \left\{1+\sin{\left(\theta\right)}\right\}^2 }{ 1-\sin^2{\left(\theta\right)} } \;\cdots\;(A+B)(A-B)=A^2-B^2 \\&=& \frac{ 1+2\sin{\left(\theta\right)}+\sin^2{\left(\theta\right)} }{ \cos^2{\left(\theta\right)} } \;\cdots\;1-\sin^2{\left(\theta\right)}=\cos^2{\left(\theta\right)},\;(A+B)^2=A^2+2AB+B^2 \\&=& \frac{1}{\cos^2{\left(\theta\right)}} +2\frac{\sin{\left(\theta\right)}}{\cos^2{\left(\theta\right)}} +\frac{\sin^2{\left(\theta\right)}}{\cos^2{\left(\theta\right)}} \\&=& \frac{1}{\cos^2{\left(\theta\right)}} +2\frac{1}{\cos{\left(\theta\right)}}\frac{\sin{\left(\theta\right)}}{\cos{\left(\theta\right)}} +\frac{\sin^2{\left(\theta\right)}}{\cos^2{\left(\theta\right)}} \\&=& \frac{1}{\cos^2{\left(\theta\right)}} +2\frac{1}{\cos{\left(\theta\right)}}\tan{\left(\theta\right)} +\tan^2{\left(\theta\right)} \;\cdots\;\frac{\sin{\left(\theta\right)}}{\cos{\left(\theta\right)}}=\tan{\left(\theta\right)} \\&=& \left\{ \frac{1}{\cos{\left(\theta\right)}} +\tan{\left(\theta\right)} \right\}^2 \;\cdots\;A^2+2AB+B^2=(A+B)^2 \end{eqnarray} $$

0 件のコメント:

コメントを投稿