間違いしかありません.コメントにてご指摘いただければ幸いです(気が付いた点を特に断りなく頻繁に書き直していますのでご注意ください).

外積に外積を組み合わされた式 ( ベクトル三重積 )

外積に外積を組み合わされた式

$$ \begin{eqnarray} \left(\mathbf{A}\times\mathbf{B}\right)\times\mathbf{C} &=& \begin{vmatrix} \mathbf{i}&\mathbf{j}&\mathbf{k}\\ x_a&y_a&z_a\\ x_b&y_b&z_b\\ \end{vmatrix} \cdot \left(x_c\mathbf{i}+y_c\mathbf{j}+z_c\mathbf{k}\right) \\&=& \left( \left(y_az_b-y_bz_a\right)\mathbf{i} +\left(x_bz_a-x_az_b\right)\mathbf{j} +\left(x_ay_b-x_by_a\right)\mathbf{k} \right) \times \left( x_c\mathbf{i} +y_c\mathbf{j} +z_c\mathbf{k} \right) \\&=& \begin{vmatrix} \mathbf{i}&\mathbf{j}&\mathbf{k}\\ \left(y_az_b-y_bz_a\right)\mathbf{i} &\left(x_bz_a-x_az_b\right)\mathbf{j} &\left(x_ay_b-x_by_a\right)\mathbf{k}\\ x_c&y_c&z_c\\ \end{vmatrix} \\&=& \left\{ \left(x_bz_a-x_az_b\right)z_c-\left(x_ay_b-x_by_a\right)y_c \right\}\mathbf{i} \\&&+\left\{ \left(x_ay_b-x_by_a\right)x_c-\left(y_az_b-y_bz_a\right)z_c \right\}\mathbf{j} \\&&+\left\{ \left(y_az_b-y_bz_a\right)y_c-\left(x_bz_a-x_az_b\right)x_c \right\}\mathbf{k} \\&=& \left\{ \left(x_b\;z_az_c-x_a\;z_bz_c\right)-\left(x_a\;y_by_c-x_b\;y_ay_c\right) \right\}\mathbf{i} \\&&+\left\{ \left(y_b\;x_ax_c-y_a\;x_bx_c\right)-\left(y_a\;z_bz_c-y_b\;z_az_c\right) \right\}\mathbf{j} \\&&+\left\{ \left(z_b\;y_ay_c-z_a\;y_by_c\right)-\left(z_a\;x_bx_c-z_b\;x_ax_c\right) \right\}\mathbf{k} \\&=& \left\{\left(x_b\;z_az_c-x_a\;z_bz_c\right)-\left(x_a\;y_by_c-x_b\;y_ay_c\right) {\color{red}+x_b\;x_ax_c-x_a\;x_bx_c} \right\}\mathbf{i} \\&&+\left\{\left(y_b\;x_ax_c-y_a\;x_bx_c\right)-\left(y_a\;z_bz_c-y_b\;z_az_c\right) {\color{red}+y_b\;y_ay_c-y_a\;y_by_c} \right\}\mathbf{j} \\&&+\left\{\left(z_b\;y_ay_c-z_a\;y_by_c\right)-\left(z_a\;x_bx_c-z_b\;x_ax_c\right) {\color{red}+z_b\;z_az_c-z_a\;z_bz_c} \right\}\mathbf{k} \\&=& \left\{ \left(x_b\;x_ax_c+x_b\;y_ay_c+x_b\;z_az_c\right)\mathbf{i} +\left(y_b\;x_ax_c+y_b\;y_ay_c+y_b\;z_az_c\right)\mathbf{j} +\left(z_b\;x_ax_c+z_b\;y_ay_c+z_b\;z_az_c\right)\mathbf{k} \right\} \\&&-\left\{ \left(x_a\;x_bx_c+x_a\;y_by_c+x_a\;z_bz_c\right)\mathbf{i} +\left(y_a\;x_bx_c+y_a\;y_by_c+y_a\;z_bz_c\right)\mathbf{j} +\left(z_a\;x_bx_c+z_a\;y_by_c+z_a\;z_bz_c\right)\mathbf{k} \right\} \\&=& \left\{ \left(x_ax_c+y_ay_c+z_az_c\right)x_b\;\mathbf{i} +\left(x_ax_c+y_ay_c+z_az_c\right)y_b\;\mathbf{j} +\left(x_ax_c+y_ay_c+z_az_c\right)z_b\;\mathbf{k} \right\} \\&&-\left\{ \left(x_bx_c+y_by_c+z_bz_c\right)x_a\;\mathbf{i} +\left(x_bx_c+y_by_c+z_bz_c\right)y_a\;\mathbf{j} +\left(x_bx_c+y_by_c+z_bz_c\right)z_a\;\mathbf{k} \right\} \\&=& \left(x_ax_c+y_ay_c+z_az_c\right)\left(x_b\;\mathbf{i}+y_b\;\mathbf{j}+z_b\;\mathbf{k}\right) -\left(x_bx_c+y_by_c+z_bz_c\right)\left(x_a\;\mathbf{i}+y_a\;\mathbf{j}+z_a\;\mathbf{k}\right) \\&=&\left(\mathbf{A}\cdot\mathbf{C}\right)\mathbf{B}-\left(\mathbf{B}\cdot\mathbf{C}\right)\mathbf{A} \end{eqnarray} $$ $$ \begin{eqnarray} \mathbf{A}\times\left(\mathbf{B}\times\mathbf{C}\right) &=& \left(x_a\mathbf{i}+y_a\mathbf{j}+z_a\mathbf{k}\right) \times \begin{vmatrix} \mathbf{i}&\mathbf{j}&\mathbf{k}\\ x_b&y_b&z_b\\ x_c&y_c&z_c\\ \end{vmatrix} \\&=& \left( x_a\mathbf{i} +y_a\mathbf{j} +z_a\mathbf{k} \right) \times \left( \left(y_bz_c-y_cz_b\right)\mathbf{i} +\left(x_cz_b-x_bz_c\right)\mathbf{j} +\left(x_by_c-x_cy_b\right)\mathbf{k} \right) \\&=& \begin{vmatrix} \mathbf{i}&\mathbf{j}&\mathbf{k}\\ x_a&y_a&z_a\\ \left(y_bz_c-y_cz_b\right)&\left(x_cz_b-x_bz_c\right)&\left(x_by_c-x_cy_b\right)\\ \end{vmatrix} \\&=& \left\{ y_a\left(x_by_c-x_cy_b\right)-z_a\left(x_cz_b-x_bz_c\right) \right\} \mathbf{i} \\&&+ \left\{ z_a\left(y_bz_c-y_cz_b\right)-x_a\left(x_by_c-x_cy_b\right) \right\} \mathbf{j} \\&&+ \left\{ x_a\left(x_cz_b-x_bz_c\right)-y_a\left(y_bz_c-y_cz_b\right) \right\} \mathbf{k} \\&=& \left\{ \left(x_b\;y_ay_c-x_c\;y_ay_b\right)-\left(x_c\;z_az_b-x_b\;z_az_c\right) \right\} \mathbf{i} \\&&+ \left\{ \left(y_b\;z_az_c-y_c\;z_az_b\right)-\left(y_c\;x_ax_b-y_b\;x_ax_c\right) \right\} \mathbf{j} \\&&+ \left\{ \left(z_b\;x_ax_c-z_c\;x_ax_b\right)-\left(z_c\;y_ay_b-z_b\;y_ay_c\right) \right\} \mathbf{k} \\&=& \left\{ \left(x_b\;y_ay_c-x_c\;y_ay_b\right)-\left(x_c\;z_az_b-x_b\;z_az_c\right) {\color{red}+x_b\;x_ax_c-x_c\;x_ax_b} \right\} \mathbf{i} \\&&+ \left\{ \left(y_b\;z_az_c-y_c\;z_az_b\right)-\left(y_c\;x_ax_b-y_b\;x_ax_c\right) {\color{red}+y_b\;y_ay_c-y_c\;y_ay_b} \right\} \mathbf{j} \\&&+ \left\{ \left(z_b\;x_ax_c-z_c\;x_ax_b\right)-\left(z_c\;y_ay_b-z_b\;y_ay_c\right) {\color{red}+z_b\;z_az_c-z_c\;z_az_b} \right\} \mathbf{k} \\&=& \left\{ \left( x_b\;x_ax_c+x_b\;y_ay_c+x_b\;z_az_c \right) \mathbf{i} + \left( y_b\;x_ax_c+y_b\;y_ay_c+y_b\;z_az_c \right) \mathbf{j} + \left( z_b\;x_ax_c+z_b\;y_ay_c+z_b\;z_az_c \right) \mathbf{k} \right\} \\&&-\left\{ \left( x_c\;x_ax_b+x_c\;y_ay_b+x_c\;z_az_b \right) \mathbf{i} + \left( y_c\;x_ax_b+y_c\;y_ay_b+y_c\;z_az_b \right) \mathbf{j} + \left( z_c\;x_ax_b+z_c\;y_ay_b+z_c\;z_az_b \right) \mathbf{k} \right\} \\&=& \left\{ \left( x_ax_c+y_ay_c+z_az_c \right) x_b\;\mathbf{i} + \left( x_ax_c+y_ay_c+z_az_c \right) y_b\;\mathbf{j} + \left( x_ax_c+y_ay_c+z_az_c \right) z_b\;\mathbf{k} \right\} \\&&-\left\{ \left( x_ax_b+y_ay_b+z_az_b \right) x_c\;\mathbf{i} + \left( x_ax_b+y_ay_b+z_az_b \right) y_c\;\mathbf{j} + \left( x_ax_b+y_ay_b+z_az_b \right) z_c\;\mathbf{k} \right\} \\&=& \left( x_ax_c+y_ay_c+z_az_c \right) \left(x_b\;\mathbf{i}+y_b\;\mathbf{j}+z_b\;\mathbf{k}\right) - \left( x_ax_b+y_ay_b+z_az_b \right) \left(x_c\;\mathbf{i}+y_c\;\mathbf{j}+z_c\;\mathbf{k}\right) \\&=&\left(\mathbf{A}\cdot\mathbf{C}\right)\mathbf{B}-\left(\mathbf{A}\cdot\mathbf{B}\right)\mathbf{C} \\ \\ \left(\mathbf{A}\times\mathbf{B}\right)\times\mathbf{C} &=&-\mathbf{C}\times\left(\mathbf{A}\times\mathbf{B}\right) \;\cdots\;\mathbf{A}\times\mathbf{B}=-\mathbf{B}\times\mathbf{A} \\&=&\left((-\mathbf{C})\cdot\mathbf{B}\right)\mathbf{A}-\left((-\mathbf{C})\cdot\mathbf{A}\right)\mathbf{B} \;\cdots\;\mathbf{A}\times\left(\mathbf{B}\times\mathbf{C}\right)=\left(\mathbf{A}\cdot\mathbf{C}\right)\mathbf{B}-\left(\mathbf{A}\cdot\mathbf{B}\right)\mathbf{C} \\&=&\left(\mathbf{A}\cdot\mathbf{C}\right)\mathbf{B}-\left(\mathbf{B}\cdot\mathbf{C}\right)\mathbf{A} \;\cdots\;\mathbf{A}\cdot\mathbf{B}=\mathbf{B}\cdot\mathbf{A},\;\left(\left(-\mathbf{A}\right)\cdot\mathbf{B}\right)=-\left(\mathbf{A}\cdot\mathbf{B}\right) \end{eqnarray} $$

0 件のコメント:

コメントを投稿