$$
\href{https://shikitenkai.blogspot.com/2020/04/blog-post.html}{\frac{\partial \log{f(x;\theta)}}{\partial \theta}:スコア凾数}\\
$$
スコア凾数の期待値
$$
\begin{eqnarray}
\mathrm{E}\left[ \frac{\partial \log{f(x;\theta)}}{\partial \theta} \right]\
&=&\int{ \frac{\partial \log{f(x;\theta)}}{\partial \theta} f(x;\theta)\mathrm{d}x}\\
&=&\int{ \frac{1}{f(x;\theta)} \frac{\partial f(x;\theta)}{\partial \theta} f(x;\theta)\mathrm{d}x}
\;\cdots\;\frac{\mathrm{d}}{\mathrm{d}x}\log{f(x)}=\frac{1}{f(x)}\frac{\mathrm{d}f(x)}{\mathrm{d}x}\\
&=&\int{ \frac{\partial f(x;\theta)}{\partial \theta} \mathrm{d}x}\\
&=&\frac{\partial }{\partial \theta} \int{f(x;\theta) \mathrm{d}x}\\
&=&\frac{\partial }{\partial \theta} 1\;\cdots\;\int{f(x;\theta) \mathrm{d}x}=1\\
&=&0\;\cdots\;定数の微分は0\\
\end{eqnarray}
$$
スコア凾数の分散
$$
\mathcal{I}=\mathrm{V}\left[\frac{ \partial \log{ f(x;\theta) }}{ \partial \theta }\right]:フィッシャー情報量\\
$$
0 件のコメント:
コメントを投稿