不偏推定量の分散(平均二乗誤差)
推定したパラメタ(不偏推定量)の分散(平均二乗誤差)
$$ \begin{eqnarray} \mathrm{E}\left[\left(\hat{\theta}-\theta\right)^2\right] &=&\mathrm{E}\left[ \hat{\theta}^2-2\hat{\theta}\theta+\theta^2 \right]\\ &=&\mathrm{E}\left[\hat{\theta}^2\right] -2\theta\mathrm{E}\left[\hat{\theta}\right] +\theta^2\mathrm{E}\left[1\right]\\ &=&\mathrm{E}\left[\hat{\theta}^2\right] -2\theta\mathrm{E}\left[\hat{\theta}\right] +\theta^2 +\mathrm{E}\left[\hat{\theta}\right]^2 -\mathrm{E}\left[\hat{\theta}\right]^2 \;\cdots\;\mathrm{E}\left[\hat{\theta}\right]^2 -\mathrm{E}\left[\hat{\theta}\right]^2=0\\ &=&\mathrm{E}\left[\hat{\theta}\right]^2 -2\theta\mathrm{E}\left[\hat{\theta}\right] +\theta^2 +\mathrm{E}\left[\hat{\theta}^2\right] -\mathrm{E}\left[\hat{\theta}\right]^2\\ &=&\left(\mathrm{E}\left[\hat{\theta}\right]-\theta\right)^2 +\mathrm{V}\left[\hat{\theta}\right] \;\cdots\;\href{https://shikitenkai.blogspot.com/2019/06/discrete-random-variable-variance.html}{\mathrm{V}\left[X\right]=\mathrm{E}\left[X^2\right]-\mathrm{E}\left[X\right]^2}\\ &=&\left(\theta-\theta\right)^2 +\mathrm{V}\left[\hat{\theta}\right] \;\cdots\;\hat{\theta}は不偏推定量なので\mathrm{E}\left[\hat{\theta}\right]=\theta\\ &=&\mathrm{V}\left[\hat{\theta}\right]\\ \end{eqnarray} $$スコア凾数の期待値と分散
$$
\href{https://shikitenkai.blogspot.com/2020/04/blog-post.html}{\frac{\partial \log{f(x;\theta)}}{\partial \theta}:スコア凾数}\\
$$
スコア凾数の期待値
$$ \begin{eqnarray} \mathrm{E}\left[ \frac{\partial \log{f(x;\theta)}}{\partial \theta} \right]\ &=&\int{ \frac{\partial \log{f(x;\theta)}}{\partial \theta} f(x;\theta)\mathrm{d}x}\\ &=&\int{ \frac{1}{f(x;\theta)} \frac{\partial f(x;\theta)}{\partial \theta} f(x;\theta)\mathrm{d}x} \;\cdots\;\frac{\mathrm{d}}{\mathrm{d}x}\log{f(x)}=\frac{1}{f(x)}\frac{\mathrm{d}f(x)}{\mathrm{d}x}\\ &=&\int{ \frac{\partial f(x;\theta)}{\partial \theta} \mathrm{d}x}\\ &=&\frac{\partial }{\partial \theta} \int{f(x;\theta) \mathrm{d}x}\\ &=&\frac{\partial }{\partial \theta} 1\;\cdots\;\int{f(x;\theta) \mathrm{d}x}=1\\ &=&0\;\cdots\;定数の微分は0\\ \end{eqnarray} $$スコア凾数の分散
$$ \mathcal{I}=\mathrm{V}\left[\frac{ \partial \log{ f(x;\theta) }}{ \partial \theta }\right]:フィッシャー情報量\\ $$スコア凾数
スコア凾数
- \(f(x;\theta)\)を\(\theta\)をパラメタとした\(x\)の確率密度分布とする.
- \(f(\theta;x)\)を\(\theta\)の凾数とみた場合を尤度凾数と呼ぶ.
- \(\log{f(\theta;x)}\)を対数尤度凾数と呼ぶ.
- \(\frac{\partial \log{f(\theta;x)}}{\partial \theta}\)をスコア凾数と呼ぶ.
- 対数尤度凾数をパラメタ(\(\theta\))で微分したスコア凾数が\(0\)となるパラメタが,尤度を極値とするパラメタとなる(対数は単調増加凾数).
登録:
投稿 (Atom)