ラグランジアンとガリレイ変換
$$\begin{eqnarray}
L&=&\frac{m}{2}\dot{q}^2\\
\end{eqnarray}$$
$$\begin{eqnarray}
q'&=&q + Vt\;\dots\;系がV(一定値)で移動している\\
\dot{q'}&=&\dot{q}+V\;\dots\;\frac{\mathrm{d}}{\mathrm{d}t}(q + Vt)=\frac{\mathrm{d}}{\mathrm{d}t}q + \frac{\mathrm{d}}{\mathrm{d}t}Vt\\
L'&=&\frac{m}{2}(\dot{q’})^2\\
&=&\frac{m}{2}(\dot{q}+V)^2\\
&=&\frac{m}{2}(\dot{q}^2+2\dot{q}V+V^2)\\
&=&\frac{m}{2}\dot{q}^2+\frac{m}{2}(2\dot{q}V+V^2)\\
&=&L+\frac{m}{2}\left(2\dot{q}V+V^2\right)\\
\frac{\partial L'}{\partial q}-\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L'}{\partial \dot{q}}
&=&\left\{\frac{\partial L}{\partial q} + \frac{\partial}{\partial q}\left(2\dot{q}V+V^2\right)\right\}
- \left[ \frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{q}} + \frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial}{\partial \dot{q}} \left\{ \frac{m}{2} (2\dot{q}V+V^2) \right\} \right]\\
&=&\frac{\partial L}{\partial q}
- \left(
\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{q}}
+ \frac{\mathrm{d}}{\mathrm{d}t}mV
\right)\;\dots\;\frac{\mathrm{d}}{\mathrm{d}q}\left(2\dot{q}V+V^2\right) = 0\;\dots\;qと\dot{q}は独立\\
&=&\frac{\partial L}{\partial q}
- \frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{q}}
\;\dots\;\frac{\mathrm{d}}{\mathrm{d}t} mV = 0\;\dots\;ここではVは定数である\\
\end{eqnarray}$$
0 件のコメント:
コメントを投稿