ラグランジアンを変えない加えてもよい凾数
$$\begin{eqnarray}
L'&=&L+\frac{\mathrm{d}}{\mathrm{d}t} f(q, t)\;\dots\;任意凾数f(q,t)の時間に関する完全導凾数(全微分)\\
\frac{\partial L'}{\partial q}-\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L'}{\partial \dot{q}}
&=&\left (
\frac{\partial L}{\partial q}
+ \frac{\partial }{\partial q}\frac{\mathrm{d}}{\mathrm{d}t} f
\right )
- \left (
\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L'}{\partial \dot{q}}
+ \frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial }{\partial \dot{q}}\frac{\mathrm{d}}{\mathrm{d}t} f
\right )\\
&=&\left(
\frac{\partial L}{\partial q}
- \frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{q}}
\right)
+ \left(
\frac{\partial }{\partial q}\frac{\mathrm{d}}{\mathrm{d}t} f
- \frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial }{\partial \dot{q}}\frac{\mathrm{d}}{\mathrm{d}t} f
\right)\\
&=&\left(
\frac{\partial L}{\partial q}
- \frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{q}}
\right)
+ \left\{
\frac{\partial }{\partial q}\left(
\frac{\partial f}{\partial q}\dot{q} + \frac{\partial f}{\partial t}
\right)
- \frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial }{\partial \dot{q}}\left(
\frac{\partial f}{\partial q}\dot{q} + \frac{\partial f}{\partial t}
\right)
\right\}
\;\dots\;
\frac{\mathrm{d}}{\mathrm{d}t} f(q, t)
&=&\frac{\partial f(q,t)}{\partial q}\frac{\mathrm{d}q}{\mathrm{d}t}
+ \frac{\partial f(q,t)}{\partial t}\frac{\mathrm{d}t}{\mathrm{d}t}\\
&&&=&\frac{\partial f(q,t)}{\partial q}\frac{\mathrm{d}q}{\mathrm{d}t} + \frac{\partial f(q,t)}{\partial t}\\
&&&=&\frac{\partial f(q,t)}{\partial q}\dot{q} + \frac{\partial f(q,t)}{\partial t}\\
&=&\left(
\frac{\partial L}{\partial q}
- \frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{q}}
\right)
+ \left\{
\frac{\partial }{\partial q}\left(
\frac{\partial f}{\partial q}\dot{q} + \frac{\partial f}{\partial t}
\right)
- \frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial f}{\partial q}
\right\}
\;\dots\;
\frac{\partial}{\partial \dot{q}}\left(
\frac{\partial f(q,t)}{\partial q}\dot{q} + \frac{\partial f(q,t)}{\partial t}
\right)&=&\frac{\partial f(q,t)}{\partial q}\;\dots\;qと\dot{q}は独立\\
&=&\left(
\frac{\partial L}{\partial q}
- \frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{q}}
\right)
+ \left\{
\frac{\partial }{\partial q}\left(
\frac{\partial f}{\partial q}\dot{q} + \frac{\partial f}{\partial t}
\right)
- \left(\frac{\partial}{\partial q}\frac{\partial f}{\partial q}\dot{q}
+ \frac{\partial}{\partial t}\frac{\partial f}{\partial q}\right)
\right\}
\;\dots\;
\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial f(q,t)}{\partial q}
&=&\frac{\partial}{\partial q}\frac{\partial f(q,t)}{\partial q}\frac{\mathrm{d}q}{\mathrm{d}t}
+ \frac{\partial}{\partial t}\frac{\partial f(q,t)}{\partial q}\frac{\mathrm{d}t}{\mathrm{d}t}\\
&&&=&\frac{\partial}{\partial q}\frac{\partial f(q,t)}{\partial q}\frac{\mathrm{d}q}{\mathrm{d}t}
+ \frac{\partial}{\partial t}\frac{\partial f(q,t)}{\partial q}\\
&&&=&\frac{\partial}{\partial q}\frac{\partial f(q,t)}{\partial q}\dot{q}
+ \frac{\partial}{\partial t}\frac{\partial f(q,t)}{\partial q}\\
&=&\left(
\frac{\partial L}{\partial q}
- \frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{q}}
\right)
+ \left\{
\frac{\partial }{\partial q}\frac{\partial f}{\partial q}\dot{q}
+\frac{\partial }{\partial q} \frac{\partial f}{\partial t}
- \left(\frac{\partial}{\partial q}\frac{\partial f}{\partial q}\dot{q}
+ \frac{\partial}{\partial t}\frac{\partial f}{\partial q}\right)
\right\}\\
&=&\left(
\frac{\partial L}{\partial q}
- \frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{q}}
\right)
+ \left(
\frac{\partial }{\partial q} \frac{\partial f}{\partial t}
- \frac{\partial}{\partial t}\frac{\partial f}{\partial q}
\right)\\
&=&\left(
\frac{\partial L}{\partial q}
- \frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{q}}
\right)
+ \left(
\frac{\partial }{\partial q} \frac{\partial f}{\partial t}
- \frac{\partial}{\partial q}\frac{\partial f}{\partial t}
\right)\;\dots\;偏微分の順番の入れ替え条件を満たす場合\\
&=&\frac{\partial L}{\partial q}
- \frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{q}}
\;\dots\;L'で立てた方程式はLで立て方程式と等しくなる
\end{eqnarray}$$
0 件のコメント:
コメントを投稿