離散型確率変数(discrete random variable) の一様分布(uniform distribution)の積率母凾数(moment-generating function)
$$f_X(x) =
\begin{cases}
\displaystyle \frac{1}{n} & \quad x \in \left\{1,2, \dots ,n\right\}\\
\displaystyle 0 & \quad x \notin \left\{1,2, \dots ,n\right\}
\end{cases}
$$
$$\begin{array}{rcl}
\displaystyle M_X(t)&\equiv&\displaystyle E[\mathrm{e}^{tX}]\\
&=&\displaystyle \sum_{x=1}^{n}\mathrm{e}^{tx}\left(\frac{1}{n}\right)\\
&=&\displaystyle \frac{1}{n} \sum_{x=1}^{n}\mathrm{e}^{tx}\\
&=&\displaystyle \frac{1}{n} \left(\mathrm{e}^t+\mathrm{e}^{2t}+\dotsb+\mathrm{e}^{nt}\right)\\
&=&\displaystyle \frac{1}{n} \frac{\mathrm{e}^{t}(\mathrm{e}^{nt}-1)}{\mathrm{e}^{t}-1}
\,\dotso\,a+ar+ar^2+\dotsb+ar^{n-1}=\frac{a(1-r^n)}{1-r}=\frac{a(r^n-1)}{r-1}\;(r \neq 1)\\
&=&\displaystyle \frac{\mathrm{e}^{t}(\mathrm{e}^{nt}-1)}{n(\mathrm{e}^{t}-1)}\\
\end{array}$$
登録:
コメントの投稿 (Atom)
0 件のコメント:
コメントを投稿