$$\begin{array}{rcl}
\displaystyle M_X^{(m)}(0)&\equiv&\frac{ \mathrm{d}^m }{ \mathrm{d}^m t } M_X(t)|_{t=0}\\
&=&\displaystyle E[X^m\mathrm{e}^{tX}]|_{t=0}\\
&=&\displaystyle E[X^m]\\
\end{array}$$
積率母凾数の一階微分
$$\begin{array}{rcl}
\displaystyle M_X^{(1)}
&=& \displaystyle \frac{\mathrm{d}}{\mathrm{d}t}\left\{
\displaystyle \href{https://shikitenkai.blogspot.com/2019/07/uniform-distribution.html}{\frac{1}{n}\frac{\mathrm{e}^{t}(\mathrm{e}^{nt}-1)}{(\mathrm{e}^{t}-1)}}
\displaystyle \right\}\\
&=& \displaystyle \frac{1}{n}
\displaystyle \frac{\mathrm{d}}{\mathrm{d}t}\left\{
\displaystyle \frac{\mathrm{e}^{t}(\mathrm{e}^{nt}-1)}{(\mathrm{e}^{t}-1)}
\displaystyle \right\}\\
&=& \displaystyle \frac{1}{n}
\displaystyle \frac{\mathrm{d}}{\mathrm{d}t}\left\{
\displaystyle \mathrm{e}^{t}(\mathrm{e}^{nt}-1)(\mathrm{e}^{t}-1)^{-1}
\displaystyle \right\}\\
&=&\displaystyle \frac{1}{n}
\left\{
(\mathrm{e}^{t})'(\mathrm{e}^{nt}-1)(\mathrm{e}^{t}-1)^{-1}
+ \mathrm{e}^{t}(\mathrm{e}^{nt}-1)'(\mathrm{e}^{t}-1)^{-1}
+ \mathrm{e}^{t}(\mathrm{e}^{nt}-1)((\mathrm{e}^{t}-1)^{-1})'
\right\}\\
&&\,\dotso\,(uvw)'=u'(vw)+u(vw)'=u'(vw)+u(v'w+vw')=u'vw+uv'w+uvw'\\
&=&\displaystyle \frac{1}{n}
\left\{
\mathrm{e}^{t}(\mathrm{e}^{nt}-1)(\mathrm{e}^{t}-1)^{-1}
+ \mathrm{e}^{t}(n\mathrm{e}^{nt})(\mathrm{e}^{t}-1)^{-1}
+ \mathrm{e}^{t}(\mathrm{e}^{nt}-1)(-\mathrm{e}^{t}(\mathrm{e}^{t}-1)^{-2})
\right\}\\
&=&\displaystyle \frac{1}{n}
\left\{
\frac{\mathrm{e}^{t}(\mathrm{e}^{nt}-1)}{(\mathrm{e}^{t}-1)}
+ \frac{\mathrm{e}^{t}(n\mathrm{e}^{nt})}{(\mathrm{e}^{t}-1)}
+ \frac{\mathrm{e}^{t}\mathrm{e}^{t}(\mathrm{e}^{nt}-1)}{-(\mathrm{e}^{t}-1)^2}
\right\}\\
&=&\displaystyle \frac{\mathrm{e}^{t}}{n}
\left\{
\frac{(\mathrm{e}^{nt}-1)}{(\mathrm{e}^{t}-1)}
+ \frac{(n\mathrm{e}^{nt})}{(\mathrm{e}^{t}-1)}
+ \frac{\mathrm{e}^{t}(\mathrm{e}^{nt}-1)}{-(\mathrm{e}^{t}-1)^2}
\right\}\\
&=&\displaystyle \frac{\mathrm{e}^{t}}{n}
\frac{(\mathrm{e}^{nt}-1)(\mathrm{e}^{t}-1)
+ (n\mathrm{e}^{nt})(\mathrm{e}^{t}-1)
- \mathrm{e}^{t}(\mathrm{e}^{nt}-1)}{(\mathrm{e}^{t}-1)^2}\\
&=&\displaystyle \frac{\mathrm{e}^{t}}{n}
\frac{(\mathrm{e}^{nt}\mathrm{e}^{t}-\mathrm{e}^{nt}-\mathrm{e}^{t}+1)
+ (n\mathrm{e}^{nt}\mathrm{e}^{t}-n\mathrm{e}^{nt})
- (\mathrm{e}^{nt}\mathrm{e}^{t}-\mathrm{e}^{t})}{(\mathrm{e}^{t}-1)^2}\\
&=&\displaystyle \frac{\mathrm{e}^{t}}{n}
\frac{\mathrm{e}^{nt}\mathrm{e}^{t}-\mathrm{e}^{nt}-\mathrm{e}^{t}+1
+ n\mathrm{e}^{nt}\mathrm{e}^{t}-n\mathrm{e}^{nt}
- \mathrm{e}^{nt}\mathrm{e}^{t}+\mathrm{e}^{t}}{(\mathrm{e}^{t}-1)^2}\\
&=&\displaystyle \frac{\mathrm{e}^{t}}{n}
\frac{\mathrm{e}^{nt}(\mathrm{e}^{t} - 1 +n\mathrm{e}^{t} -n-\mathrm{e}^{t})
+1}{(\mathrm{e}^{t}-1)^2}\\
&=&\displaystyle \frac{\mathrm{e}^{t}}{n}
\frac{\mathrm{e}^{nt}(n\mathrm{e}^{t}-(n+1))+1}{(\mathrm{e}^{t}-1)^2}\\
&=&\displaystyle \frac{\mathrm{e}^{t}}{n}
\frac{n\mathrm{e}^{(n+1)t}-(n+1)\mathrm{e}^{nt}+1}{(\mathrm{e}^{t}-1)^2}\\
\end{array}$$
原点周りの一次モーメント=期待値
$$\begin{array}{rcl}
\displaystyle E[X]&=&\displaystyle M_X^{(1)}(0)\\
&=&\displaystyle \lim_{t \to 0}\left\{ \frac{\mathrm{e}^{t}}{n}
\displaystyle \frac{n\mathrm{e}^{(n+1)t}-(n+1)\mathrm{e}^{nt}+1}{(\mathrm{e}^{t}-1)^2}
\right\}\,\dotso\,0を代入すると分母が0になってしまうので極限で考える.\\
&=&\displaystyle \lim_{t \to 0}\left\{ \frac{\mathrm{e}^{t}}{n}
\displaystyle \frac{n\mathrm{e}^{(n+1)t}-(n+1)\mathrm{e}^{nt}+1}{\mathrm{e}^{2t}-2\mathrm{e}^{t}+1}
\right\}\\
&=&\displaystyle \lim_{t \to 0} \left\{\frac{\left(\frac{t^0}{0!}+\frac{t^1}{1!}+\frac{t^2}{2!}+\frac{t^3}{3!}\right)}{n}
\frac{n\left(\frac{((n+1)t)^0}{0!}+\frac{((n+1)t)^1}{1!}+\frac{((n+1)t)^2}{2!}+\frac{((n+1)t)^3}{3!}\right)
-(n+1)\left(\frac{(nt)^0}{0!}+\frac{(nt)^1}{1!}+\frac{(nt)^2}{2!}+\frac{(nt)^3}{3!}\right)
+1}{
\left(\frac{(2t)^0}{0!}+\frac{(2t)^1}{1!}+\frac{(2t)^2}{2!}+\frac{(2t)^3}{3!}\right)
-2 \left(\frac{t^0}{0!}+\frac{t^1}{1!}+\frac{t^2}{2!}+\frac{t^3}{3!}\right)
+1}
\right\}\\
&& \displaystyle \,\dotso\,\href{https://shikitenkai.blogspot.com/2019/07/blog-post.html}{\mathrm{e}^x=\sum_{k=0}^{\infty}\frac{x^k}{k!}=\frac{x^0}{0!}+\frac{x^1}{1!}+\frac{x^2}{2!}+\frac{x^3}{3!}+\dotsb} (マクローリン展開), ひとまずt^3の項までで計算を進める.\\
&=&\displaystyle \lim_{t \to 0}\left\{ \frac{\left(1+t+\frac{1}{2}t^2+\frac{1}{6}t^3\right)}{n}
\frac{n\left(1+(n+1)t+\frac{(n+1)^2}{2}t^2+\frac{(n+1)^3}{6}t^3\right)
-(n+1)\left(1+nt+\frac{n^2}{2}t^2+\frac{n^3}{6}t^3\right)
+1}{
\left(1+(2t)+\frac{(2t)^2}{2}+\frac{(2t)^3}{6}\right)
-2 \left(1+(t)+\frac{t^2}{2}+\frac{t^3}{6}\right)
+1}
\right\}\\
&=&\displaystyle \lim_{t \to 0}\left\{ \frac{\left(1+t+\frac{1}{2}t^2+\frac{1}{6}t^3\right)}{n}
\frac{n\left(1+(n+1)t+\frac{(n+1)^2}{2}t^2+\frac{(n+1)^3}{6}t^3\right)
-(n+1)\left(1+nt+\frac{n^2}{2}t^2+\frac{n^3}{6}t^3\right)
+1}{
1+2t+2t^2+\frac{4}{3}t^3
-2-2t-t^2-\frac{1}{3}t^3
+1}
\right\}\\
&=&\displaystyle \lim_{t \to 0}\left\{ \frac{\left(1+t+\frac{1}{2}t^2+\frac{1}{6}t^3\right)}{n}
\frac{n\left(1+(n+1)t+\frac{(n+1)^2}{2}t^2+\frac{(n+1)^3}{6}t^3\right)
-(n+1)\left(1+nt+\frac{n^2}{2}t^2+\frac{n^3}{6}t^3\right)
+1}{t^2(1+t)}
\right\}\\
&=&\displaystyle \lim_{t \to 0}\left[
\frac{\left(1+t+\frac{1}{2}t^2+\frac{1}{6}t^3\right)}{nt^2(1+t)}
\left\{n+n(n+1)t+\frac{n(n+1)^2}{2}t^2+\frac{n(n+1)^3}{6}t^3
-(n+1)-(n+1)nt-\frac{(n+1)n^2}{2}t^2-\frac{(n+1)n^3}{6}t^3
+1\right\}
\right]\\
&=&\displaystyle \lim_{t \to 0}\left[
\frac{\left(1+t+\frac{1}{2}t^2+\frac{1}{6}t^3\right)}{nt^2(1+t)}
\left\{(n-(n+1)+1)
+(n(n+1)-(n+1)n)t
+(\frac{n(n+1)^2}{2}-\frac{(n+1)n^2}{2})t^2
+(\frac{n(n+1)^3}{6}-\frac{(n+1)n^3}{6})t^3
\right\}
\right]\\
&=&\displaystyle \lim_{t \to 0}\left[
\frac{\left(1+t+\frac{1}{2}t^2+\frac{1}{6}t^3\right)}{nt^2(1+t)}
\left\{(0)
+(0)t
+(\frac{n+1}{2})nt^2
+(\frac{(n+1)(2n+1)}{6})nt^3
\right\}
\right]\\
&=&\displaystyle \lim_{t \to 0}\left\{
\frac{\left(1+t+\frac{1}{2}t^2+\frac{1}{6}t^3\right)}{nt^2(1+t)}
nt^2\left(\frac{n+1}{2}+\frac{(n+1)(2n+1)}{6}t\right)
\right\}\\
&&\,\dotso\,分母はt^2の項からが残っている.t^3以上の項はtが残るのでマクローリン展開はt^3で十分となる.\\
&=&\displaystyle \lim_{t \to 0}\left\{
\left(1+t+\frac{1}{2}t^2+\frac{1}{6}t^3\right)
\left(\frac{n+1}{2}+\frac{(n+1)(2n+1)}{6}t\right)
\right\}\\
&=&\displaystyle \frac{n+1}{2}\\
&&\,\dotso\,tが分子にある(掛けられている)項は全て0.\\
\end{array}$$
0 件のコメント:
コメントを投稿