間違いしかありません.コメントにてご指摘いただければ幸いです(気が付いた点を特に断りなく頻繁に書き直していますのでご注意ください).

離散型確率変数(discrete random variable) の一様分布(uniform distribution)の期待値(expected value)

MX(m)(0)dmdmtMX(t)|t=0=E[XmetX]|t=0=E[Xm]

積率母凾数の一階微分

MX(1)=ddt{1net(ent1)(et1)}=1nddt{et(ent1)(et1)}=1nddt{et(ent1)(et1)1}=1n{(et)(ent1)(et1)1+et(ent1)(et1)1+et(ent1)((et1)1)}(uvw)=u(vw)+u(vw)=u(vw)+u(vw+vw)=uvw+uvw+uvw=1n{et(ent1)(et1)1+et(nent)(et1)1+et(ent1)(et(et1)2)}=1n{et(ent1)(et1)+et(nent)(et1)+etet(ent1)(et1)2}=etn{(ent1)(et1)+(nent)(et1)+et(ent1)(et1)2}=etn(ent1)(et1)+(nent)(et1)et(ent1)(et1)2=etn(entetentet+1)+(nentetnent)(entetet)(et1)2=etnentetentet+1+nentetnententet+et(et1)2=etnent(et1+netnet)+1(et1)2=etnent(net(n+1))+1(et1)2=etnne(n+1)t(n+1)ent+1(et1)2

原点周りの一次モーメント=期待値

E[X]=MX(1)(0)=limt0{etnne(n+1)t(n+1)ent+1(et1)2}00=limt0{etnne(n+1)t(n+1)ent+1e2t2et+1}=limt0{(t00!+t11!+t22!+t33!)nn(((n+1)t)00!+((n+1)t)11!+((n+1)t)22!+((n+1)t)33!)(n+1)((nt)00!+(nt)11!+(nt)22!+(nt)33!)+1((2t)00!+(2t)11!+(2t)22!+(2t)33!)2(t00!+t11!+t22!+t33!)+1}ex=k=0xkk!=x00!+x11!+x22!+x33!+(),t3=limt0{(1+t+12t2+16t3)nn(1+(n+1)t+(n+1)22t2+(n+1)36t3)(n+1)(1+nt+n22t2+n36t3)+1(1+(2t)+(2t)22+(2t)36)2(1+(t)+t22+t36)+1}=limt0{(1+t+12t2+16t3)nn(1+(n+1)t+(n+1)22t2+(n+1)36t3)(n+1)(1+nt+n22t2+n36t3)+11+2t+2t2+43t322tt213t3+1}=limt0{(1+t+12t2+16t3)nn(1+(n+1)t+(n+1)22t2+(n+1)36t3)(n+1)(1+nt+n22t2+n36t3)+1t2(1+t)}=limt0[(1+t+12t2+16t3)nt2(1+t){n+n(n+1)t+n(n+1)22t2+n(n+1)36t3(n+1)(n+1)nt(n+1)n22t2(n+1)n36t3+1}]=limt0[(1+t+12t2+16t3)nt2(1+t){(n(n+1)+1)+(n(n+1)(n+1)n)t+(n(n+1)22(n+1)n22)t2+(n(n+1)36(n+1)n36)t3}]=limt0[(1+t+12t2+16t3)nt2(1+t){(0)+(0)t+(n+12)nt2+((n+1)(2n+1)6)nt3}]=limt0{(1+t+12t2+16t3)nt2(1+t)nt2(n+12+(n+1)(2n+1)6t)}t2t3tt3=limt0{(1+t+12t2+16t3)(n+12+(n+1)(2n+1)6t)}=n+12t()0

0 件のコメント:

コメントを投稿