標本平均\(\overline{X}\)の母平均\(\mu\)まわりの3次モーメント(=標本平均\(\overline{X}\)の3次の中心(化)モーメント)
$$
\begin{eqnarray}
\mathrm{E}\left[(\overline{X}-\mu)^3\right]
&=&\mathrm{E}\left[\left\{\left(\frac{1}{n}\sum_{k=1}^{n}X_k\right) - \mu\right\}^3\right]
\;\cdots\;\overline{X}=\frac{1}{n}\sum_{k=1}^{n}X_k
\\&=&\mathrm{E}\left[\left\{\left(\frac{1}{n}\sum_{k=1}^{n}X_k\right) - \left(\frac{1}{n}\sum_{k=1}^{n}\mu\right)\right\}^3\right]
\;\cdots\;C=\frac{n}{n}C=\frac{1}{n}C\sum_{k=1}^{n}1=\frac{1}{n}\sum_{k=1}^{n}C\;(C:kによらない数,\sumにとって定数)
\\&=&\mathrm{E}\left[\left[\frac{1}{n}\left\{\left(\sum_{k=1}^{n}X_k\right)-\left(\sum_{k=1}^{n}\mu\right)\right\}\right]^3\right]
\\&=&\mathrm{E}\left[\frac{1}{n^3}\left\{\left(\sum_{k=1}^{n}X_k\right)-\left(\sum_{k=1}^{n}\mu\right)\right\}^3\right]
\;\cdots\;(AB)^C=A^CB^C
\\&=&\mathrm{E}\left[\frac{1}{n^3}\left\{\sum_{k=1}^{n}\left(X_k-\mu\right)\right\}^3\right]
\;\cdots\;\sum_{k=1}^{n}X_k-\sum_{k=1}^{n}Y_k=\sum_{k=1}^{n}\left(X_k-Y_k\right)
\end{eqnarray}
$$
総和の指数計算において掛け合わせる添え字の組合せについて考える.
$$
\begin{eqnarray}
\left(\sum_{k=1}^{n}A_k\right)^3
&=&\left(\sum_{k=1}^{n} A_k \right)\left(\sum_{l=1}^{n}A_l\right)\left(\sum_{m=1}^{n}A_m\right)
\\&=&(A_1+A_2+\cdots+A_k+\cdots+A_n)(A_1+A_2+\cdots+A_l+\cdots+A_n)(A_1+A_2+\cdots+A_m+\cdots+A_n)
\\&=&_3\mathrm{P}_0\times\left(\sum_{k=1}^{n} A_k^3 \right)\;\cdots\;3つとも同じ添え字(どれか0個の添え字が異なるケース)
\\&&+_3\mathrm{P}_1\times\left(\sum_{k \neq l} A_k^2 A_l\right)\;\cdots\;いずれか2つが同じ添え字(どれか1個の添え字が異なるのケース)
\\&&+_3\mathrm{P}_2\times\left(\sum_{k \lt l \lt m} A_k A_l A_m\right)\;\cdots\;すべての添え字が異なるケース(どれか2個の添え字が異なるのケース)
\\&&\;\cdots\;各ケースでの(重複する数 \times 組合せで総和)の和
\\&=&\frac{3!}{(3-0)!}\left(\sum_{k=1}^{n} A_k^3 \right)
+\frac{3!}{(3-1)!}\left(\sum_{k \neq l} A_k^2 A_l\right)
+\frac{3!}{(3-2)!}\left(\sum_{k \lt l \lt m} A_k A_l A_m\right)
\\&=&\frac{3\times2\times1}{3\times2\times1}\left(\sum_{k=1}^{n} A_k^3 \right)
+\frac{3\times2\times1}{2\times1}\left(\sum_{k \neq l} A_k^2 A_l\right)
+\frac{3\times2\times1}{1}\left(\sum_{k \lt l \lt m} A_k A_l A_m\right)
\\&=&1\cdot\left(\sum_{k=1}^{n} A_k^3 \right)
+3\cdot\left(\sum_{k \neq l} A_k^2 A_l\right)
+6\cdot\left(\sum_{k \lt l \lt m} A_k A_l A_m\right)
\end{eqnarray}
$$
よって,
$$
\begin{eqnarray}
\mathrm{E}\left[(\overline{X}-\mu)^3\right]
&=&\mathrm{E}\left[\frac{1}{n^3}\left\{\sum_{k=1}^{n}\left(X_k-\mu\right)\right\}^3\right]
\\&=&\mathrm{E}\left[\frac{1}{n^3}\left\{
\sum_{k=1}^{n} \left(X_k-\mu\right)^3
+3\sum_{k \neq l} \left(X_k-\mu\right)^2\left(X_l-\mu\right)
+6\sum_{k \lt l \lt m} \left(X_k-\mu\right)\left(X_l-\mu\right)\left(X_m-\mu\right)
\right\}\right]
\\&=&\frac{1}{n^3}\mathrm{E}\left[
\sum_{k=1}^{n} \left(X_k-\mu\right)^3
+3\sum_{k \neq l} \left(X_k-\mu\right)^2\left(X_l-\mu\right)
+6\sum_{k \lt l \lt m} \left(X_k-\mu\right)\left(X_l-\mu\right)\left(X_m-\mu\right)
\right]
\;\cdots\;\href{https://shikitenkai.blogspot.com/2019/06/discrete-random-variable-expected-value.html}{\mathrm{E}[cX]=c\mathrm{E}[X]}
\\&=&\frac{1}{n^3}\left[
\mathrm{E}\left[\sum_{k=1}^{n} \left(X_k-\mu\right)^3\right]
+\mathrm{E}\left[3\sum_{k \neq l} \left(X_k-\mu\right)^2\left(X_l-\mu\right)\right]
+\mathrm{E}\left[6\sum_{k \lt l \lt m} \left(X_k-\mu\right)\left(X_l-\mu\right)\left(X_m-\mu\right)\right]
\right]
\;\cdots\;\href{https://shikitenkai.blogspot.com/2019/06/discrete-random-variable-expected-value.html}{\mathrm{E}[X+Y]=\mathrm{E}[X]+\mathrm{E}[Y]}
\\&=&\frac{1}{n^3}\left[
\mathrm{E}\left[\sum_{k=1}^{n} \left(X_k-\mu\right)^3\right]
+3\mathrm{E}\left[\sum_{k \neq l} \left(X_k-\mu\right)^2\left(X_l-\mu\right)\right]
+6\mathrm{E}\left[\sum_{k \lt l \lt m} \left(X_k-\mu\right)\left(X_l-\mu\right)\left(X_m-\mu\right)\right]
\right]
\;\cdots\;\href{https://shikitenkai.blogspot.com/2019/06/discrete-random-variable-expected-value.html}{\mathrm{E}[cX]=c\mathrm{E}[X]}
\\&=&\frac{1}{n^3}\left[
\sum_{k=1}^{n} \mathrm{E}\left[ \left(X_k-\mu\right)^3\right]
+3\sum_{k \neq l} \mathrm{E}\left[ \left(X_k-\mu\right)^2\left(X_l-\mu\right)\right]
+6\sum_{k \lt l \lt m} \mathrm{E}\left[ \left(X_k-\mu\right)\left(X_l-\mu\right)\left(X_m-\mu\right)\right]
\right]
\\&&\;\cdots\;\mathrm{E}\left[\sum_{k=1}^n A_k\right]=\mathrm{E}\left[A_1+A_2+\;\cdots\;+A_n\right]=\mathrm{E}\left[A_1\right]+\mathrm{E}\left[A_2\right]+\cdots+\mathrm{E}\left[A_n\right]=\sum_{k=1}^n\mathrm{E}\left[A_k\right]
,\;\href{https://shikitenkai.blogspot.com/2019/06/discrete-random-variable-expected-value.html}{\mathrm{E}[X+Y]=\mathrm{E}[X]+\mathrm{E}[Y]}
\\&=&\frac{1}{n^3}\left[
\sum_{k=1}^{n} \mathrm{E}\left[\left(X_k-\mu\right)^3\right]
+3\sum_{k \neq l} \mathrm{E}\left[\left(X_k-\mu\right)^2\right]\mathrm{E}\left[X_l-\mu\right]
+6\sum_{k \lt l \lt m} \mathrm{E}\left[X_k-\mu\right]\mathrm{E}\left[X_l-\mu\right]\mathrm{E}\left[X_m-\mu\right]
\right]
\;\cdots\;\href{https://shikitenkai.blogspot.com/2019/06/discrete-random-variable-expected-value.html}{X,Yが独立の場合\,\,\mathrm{E}[XY]=\mathrm{E}[X]\mathrm{E}[Y]}
\end{eqnarray}
$$
ここで1次の中心(化)モーメントについて考える.
$$
\begin{eqnarray}
\mathrm{E}\left[X_i-\mu\right]
&=& \mathrm{E}\left[X_i\right]-\mathrm{E}\left[\mu\right]
\;\cdots\;\href{https://shikitenkai.blogspot.com/2019/06/discrete-random-variable-expected-value.html}{\mathrm{E}[X-Y]=\mathrm{E}[X]-\mathrm{E}[Y]}
\\&=& \mu-\mu
\;\cdots\;\href{https://shikitenkai.blogspot.com/2019/06/specimen-random-variable.html}{\mathrm{E}[X_i]=\mathrm{E}[X]=\mu},\;\href{https://shikitenkai.blogspot.com/2019/06/discrete-random-variable-expected-value.html}{\mathrm{E}[C]=C\;(C定数)}
\\&=& 0
\end{eqnarray}
$$
これを用いて
$$
\begin{eqnarray}
\mathrm{E}\left[(\overline{X}-\mu)^3\right]
\\&=&\frac{1}{n^3}\left[
\sum_{k=1}^{n} \mathrm{E}\left[\left(X_k-\mu\right)^3\right]
+3\sum_{k \neq l} \mathrm{E}\left[\left(X_k-\mu\right)^2\right]\mathrm{E}\left[X_l-\mu\right]
+6\sum_{k \lt l \lt m} \mathrm{E}\left[X_k-\mu\right]\mathrm{E}\left[X_l-\mu\right]\mathrm{E}\left[X_m-\mu\right]
\right]
\\&=&\frac{1}{n^3}\left[
\sum_{k=1}^{n} \mathrm{E}\left[\left(X_k-\mu\right)^3\right]
+3\sum_{k \neq l} \left(\mathrm{E}\left[\left(X_k-\mu\right)^2\right]\cdot0\right)
+6\sum_{k \lt l \lt m} \left(0\cdot0\cdot0\right)
\right]
\\&=&\frac{1}{n^3}\left[
\sum_{k=1}^{n} \mathrm{E}\left[\left(X_k-\mu\right)^3\right]
+0+0
\right]
\\&=&\frac{1}{n^3}\sum_{k=1}^{n} \mathrm{E}\left[\left(X_k-\mu\right)^3\right]
\\&=&\frac{1}{n^3}\sum_{k=1}^{n} \mu_3
\,\cdots\,\href{https://shikitenkai.blogspot.com/2019/07/mu-sigma2beta1.html}{\mathrm{E}\left[\left(X-\mu\right)^3\right]=\mu_3\;:3次の中心(化)モーメント}
\\&=&\frac{1}{n^3}n\mu_3
\\&=&\frac{\mu_3}{n^2}
\\&=&\mu_3\left(\overline{X}\right)\;\cdots\;\mu_3\left(\overline{X}\right):標本平均\overline{X}の母平均\muまわりの3次モーメント(3次の中心(化)モーメント)
\end{eqnarray}
$$
標本平均\(\overline{X}\)の母平均\(\mu\)まわりの3次モーメント(標本平均\(\overline{X}\)の3次の中心(化)モーメント)を歪度\(\beta_1\)で表す
$$
\begin{eqnarray}
\mathrm{E}\left[(\overline{X}-\mu)^3\right]
&=&\mu_3\left(\overline{X}\right)
\\&=&\frac{\mu_3}{n^2}
\;\cdots\;\href{https://shikitenkai.blogspot.com/2019/07/mu-sigma2beta1.html}{\mu_3=\mu_3\left(X\right)=\beta_1\sigma^3\;:3次の中心(化)モーメント}
\\&=&\frac{\beta_1 \sigma^3}{n^2}
\end{eqnarray}
$$
標本平均\(\overline{X}\)の歪度\(\beta_1\left(\overline{X}\right)\)
$$
\begin{eqnarray}
\href{https://shikitenkai.blogspot.com/2019/07/blog-post_22.html}{\beta_1\left(\overline{X}\right)=\frac{\beta_1}{\sqrt{n}}}
\end{eqnarray}
$$
0 件のコメント:
コメントを投稿