標本分散の式展開
$$\begin{array}{rcl}
\displaystyle \sum_{k=1}^{n}(X_k-\overline{X})^2
&=&\displaystyle \sum_{k=1}^{n}(X_k^2-2\overline{X} X_k+\overline{X}^2)\\
&=&\displaystyle \sum_{k=1}^{n}X_k^2-2\overline{X} \sum_{k=1}^{n}X_k+\overline{X}^2\sum_{k=1}^{n}1\\
&=&\displaystyle \sum_{k=1}^{n}X_k^2-2n\overline{X}^2+n\overline{X}^2\\
&&\displaystyle\,\dotso\,\sum_{k=1}^{n}X_k=n\overline{X}\\
&=&\displaystyle \sum_{k=1}^{n}X_k^2-n\overline{X}^2\\
\end{array}$$
標本の二乗和
$$\begin{array}{rcl}
\displaystyle \sum_{k=1}^{n}X_k^2
&=&\displaystyle \sum_{k=1}^{n}(X_k-\overline{X})^2+n\overline{X}^2\\
\end{array}$$
0 件のコメント:
コメントを投稿