標本平均(\(\overline{X}\))の分布の歪度
$$\begin{array}{rcl}
\displaystyle \beta_1(\overline{X})
&=&\displaystyle \frac{E\left[\left(\overline{X}-\mu\right)^3\right]}{\left(V\left[\overline{X}\right]^{\frac{1}{2}}\right)^3}\\
&=&\displaystyle \frac{\frac{\mu_3}{n^2}}{\left\{ \left( \frac{\sigma^2}{n} \right) ^{\frac{1}{2}} \right\}^3}
&&\displaystyle\,\dotso\,\href{https://shikitenkai.blogspot.com/2019/07/overlinexmu3.html}{E\left[\left(\overline{X}-\mu\right)^3\right]=\mu_3\left(\overline{X}\right)=\frac{\mu_3}{n^2}}
,\,\href{https://shikitenkai.blogspot.com/2019/06/specimen-random-variable_3.html}{V\left[\overline{X}\right]=\frac{\sigma^2}{n}}\\
&=&\displaystyle \frac{\frac{\mu_3}{n^2}}{\left( \frac{\sigma}{\sqrt{n}} \right)^3}\\
&=&\displaystyle \frac{\frac{\mu_3}{n^2}}{ \frac{\sigma^3}{n\sqrt{n}} }\\
&=&\displaystyle \frac{\mu_3}{n^2} \frac{n\sqrt{n}}{\sigma^3}\\
&=&\displaystyle \frac{\mu_3}{\sigma^3} \frac{1}{\sqrt{n}}\\
&=&\displaystyle \frac{\beta_1}{\sqrt{n}}
&&\displaystyle\,\dotso\,\href{https://shikitenkai.blogspot.com/2019/07/mu-sigma2beta1.html}{\frac{\mu_3}{\sigma^3}=\beta_1}\\
\end{array}$$
よって標本数\(n\)を増やすことで\(\beta_1\left(\overline{X}\right)\)は\(0\)に近づいていく.
0 件のコメント:
コメントを投稿